Polymorphisms within Autophagy-Related Genes as Susceptibility Biomarkers for Multiple Myeloma: A Meta-Analysis of Three Large Cohorts and Functional Characterization
Language English Country Switzerland Media electronic
Document type Meta-Analysis, Journal Article
Grant support
U01CA249955 (EEB)
National Cancer Institute of the National Institutes of Health
U01 CA249955
NCI NIH HHS - United States
R01 CA186646
NCI NIH HHS - United States
R01CA186646
National Cancer Institute of the National Institutes of Health
PI17/02256
Instituto de Salud Carlos III
PI20/01845
Instituto de Salud Carlos III
RD12/10 Red de Cáncer
the CRIS foundation against cancer, from the Cancer Network of Excellence
BMBF: CLIOMMICS [01ZX1309]
the Dietmar Hopp Foundation and the German Ministry of Education and Science
PubMed
37239846
PubMed Central
PMC10218542
DOI
10.3390/ijms24108500
PII: ijms24108500
Knihovny.cz E-resources
- Keywords
- autophagy, genetic susceptibility, genetic variants, multiple myeloma,
- MeSH
- Autophagy MeSH
- Biomarkers MeSH
- Immunoglobulin M MeSH
- Leukocytes, Mononuclear pathology MeSH
- Humans MeSH
- Multiple Myeloma * genetics pathology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Meta-Analysis MeSH
- Names of Substances
- Biomarkers MeSH
- Immunoglobulin M MeSH
Multiple myeloma (MM) arises following malignant proliferation of plasma cells in the bone marrow, that secrete high amounts of specific monoclonal immunoglobulins or light chains, resulting in the massive production of unfolded or misfolded proteins. Autophagy can have a dual role in tumorigenesis, by eliminating these abnormal proteins to avoid cancer development, but also ensuring MM cell survival and promoting resistance to treatments. To date no studies have determined the impact of genetic variation in autophagy-related genes on MM risk. We performed meta-analysis of germline genetic data on 234 autophagy-related genes from three independent study populations including 13,387 subjects of European ancestry (6863 MM patients and 6524 controls) and examined correlations of statistically significant single nucleotide polymorphisms (SNPs; p < 1 × 10-9) with immune responses in whole blood, peripheral blood mononuclear cells (PBMCs), and monocyte-derived macrophages (MDM) from a large population of healthy donors from the Human Functional Genomic Project (HFGP). We identified SNPs in six loci, CD46, IKBKE, PARK2, ULK4, ATG5, and CDKN2A associated with MM risk (p = 4.47 × 10-4-5.79 × 10-14). Mechanistically, we found that the ULK4rs6599175 SNP correlated with circulating concentrations of vitamin D3 (p = 4.0 × 10-4), whereas the IKBKErs17433804 SNP correlated with the number of transitional CD24+CD38+ B cells (p = 4.8 × 10-4) and circulating serum concentrations of Monocyte Chemoattractant Protein (MCP)-2 (p = 3.6 × 10-4). We also found that the CD46rs1142469 SNP correlated with numbers of CD19+ B cells, CD19+CD3- B cells, CD5+IgD- cells, IgM- cells, IgD-IgM- cells, and CD4-CD8- PBMCs (p = 4.9 × 10-4-8.6 × 10-4) and circulating concentrations of interleukin (IL)-20 (p = 0.00082). Finally, we observed that the CDKN2Ars2811710 SNP correlated with levels of CD4+EMCD45RO+CD27- cells (p = 9.3 × 10-4). These results suggest that genetic variants within these six loci influence MM risk through the modulation of specific subsets of immune cells, as well as vitamin D3-, MCP-2-, and IL20-dependent pathways.
Cancer Control Research BC Cancer Vancouver BC V5Z 4E6 Canada
Cancer Epidemiology Division Cancer Council Victoria Melbourne VIC 3004 Australia
CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences 1090 Vienna Austria
Centre for Individualised Infection Medicine 30625 Hannover Germany
Department of Biochemistry and Molecular Biology 1 University of Granada 18071 Granada Spain
Department of Biology University of Pisa 56126 Pisa Italy
Department of Cancer Prevention and Therapy Wroclaw Medical University 50 367 Wroclaw Poland
Department of Hematology and Transplantology Medical University of Gdansk 80 210 Gdansk Poland
Department of Hematology Hospital del Mar 08003 Barcelona Spain
Department of Hematology Medical University of Lodz 90 419 Lodz Poland
Department of Hematology Military Institute of Medicine 04 141 Warsaw Poland
Department of Hematology Odense University Hospital DK 5000 Odense Denmark
Department of Hematology Rigshospitalet Copenhagen University DK 2100 Copenhagen Denmark
Department of Hematology Rydygier Hospital 31 826 Cracow Poland
Department of Hematology University Hospital 30 688 Kraków Poland
Department of Hematology University Hospital No 2 85 168 Bydgoszcz Poland
Department of Internal Medicine 5 University of Heidelberg 69120 Heidelberg Germany
Department of Medical Oncology Complejo Hospitalario de Jaén 23007 Jaén Spain
Department of Medicine University of Granada 18012 Granada Spain
Division of Epidemiology Department of Health Sciences Research Mayo Clinic Rochester MN 55902 USA
Division of Hematology Department of Internal Medicine Mayo Clinic Rochester MN 55902 USA
Division of Hematology Huntsman Cancer Institute University of Utah Salt Lake City UT 84112 USA
Division of Pediatric Neurooncology German Cancer Research Center 69120 Heidelberg Germany
Division of Population Oncology BC Cancer Vancouver BC V5Z 4E6 Canada
Genomic Epidemiology Group German Cancer Research Center 69120 Heidelberg Germany
Hematology Department Virgen de las Nieves University Hospital 18012 Granada Spain
Hematology Division Chaim Sheba Medical Center Tel Hashomer 52621 Israel
Holycross Medical Oncology Center 25 735 Kielce Poland
Hopp Children's Cancer Center 69120 Heidelberg Germany
Hospital 12 de Octubre Complutense University CNIO CIBERONC 28041 Madrid Spain
Institute of Bioinformatics International Technology Park Bangalore 560066 India
Institute of Hematology and Transfusion Medicine 00 791 Warsaw Poland
Instituto de Investigación Biosanataria IBs Granada 18014 Granada Spain
Manipal Academy of Higher Education Manipal 576104 India
Molecular Oncology Research Center Barretos Cancer Hospital Barretos 14784 400 Brazil
Myeloma Institute University of Arkansas for Medical Sciences Little Rock AR 72205 USA
National Research Centre for the Working Environment DK 2100 Copenhagen Denmark
School of Population and Public Health University of British Columbia Vancouver BC V6T 1Z4 Canada
Semmelweis University 1083 Budapest Hungary
St Johns Hospital 62769 Budapest Hungary
U O Dipartimento di Ematologia Azienda USL Toscana Nord Ovest 57124 Livorno Italy
UMR INSERM 1052 CNRS 5286 University of Lyon Hospices Civils de Lyon 69008 Lyon France
See more in PubMed
Palumbo A., Anderson K. Multiple myeloma. N. Engl. J. Med. 2011;364:1046–1060. doi: 10.1056/NEJMra1011442. PubMed DOI
Kyle R.A., Gertz M.A., Witzig T.E., Lust J.A., Lacy M.Q., Dispenzieri A., Fonseca R., Rajkumar S.V., Offord J.R., Larson D.R., et al. Review of 1027 patients with newly diagnosed multiple myeloma. Mayo Clin. Proc. 2003;78:21–33. doi: 10.4065/78.1.21. PubMed DOI
Kastritis E., Zagouri F., Symeonidis A., Roussou M., Sioni A., Pouli A., Delimpasi S., Katodritou E., Michalis E., Michael M., et al. Preserved levels of uninvolved immunoglobulins are independently associated with favorable outcome in patients with symptomatic multiple myeloma. Leukemia. 2014;28:2075–2079. doi: 10.1038/leu.2014.110. PubMed DOI
Bradwell A., Harding S., Fourrier N., Mathiot C., Attal M., Moreau P., Harousseau J.L., Avet-Loiseau H. Prognostic utility of intact immunoglobulin Ig’kappa/Ig’lambda ratios in multiple myeloma patients. Leukemia. 2013;27:202–207. doi: 10.1038/leu.2012.159. PubMed DOI PMC
Hoang B., Benavides A., Shi Y., Frost P., Lichtenstein A. Effect of autophagy on multiple myeloma cell viability. Mol. Cancer Ther. 2009;8:1974–1984. doi: 10.1158/1535-7163.MCT-08-1177. PubMed DOI
Obeng E.A., Carlson L.M., Gutman D.M., Harrington W.J., Jr., Lee K.P., Boise L.H. Proteasome inhibitors induce a terminal unfolded protein response in multiple myeloma cells. Blood. 2006;107:4907–4916. doi: 10.1182/blood-2005-08-3531. PubMed DOI PMC
Lee A.H., Iwakoshi N.N., Anderson K.C., Glimcher L.H. Proteasome inhibitors disrupt the unfolded protein response in myeloma cells. Proc. Natl. Acad. Sci. USA. 2003;100:9946–9951. doi: 10.1073/pnas.1334037100. PubMed DOI PMC
Landowski T.H., Megli C.J., Nullmeyer K.D., Lynch R.M., Dorr R.T. Mitochondrial-mediated disregulation of Ca2+ is a critical determinant of Velcade (PS-341/bortezomib) cytotoxicity in myeloma cell lines. Cancer Res. 2005;65:3828–3836. doi: 10.1158/0008-5472.CAN-04-3684. PubMed DOI
Mitsiades C.S., Mitsiades N.S., McMullan C.J., Poulaki V., Kung A.L., Davies F.E., Morgan G., Akiyama M., Shringarpure R., Munshi N.C., et al. Antimyeloma activity of heat shock protein-90 inhibition. Blood. 2006;107:1092–1100. doi: 10.1182/blood-2005-03-1158. PubMed DOI PMC
Catley L., Weisberg E., Kiziltepe T., Tai Y.T., Hideshima T., Neri P., Tassone P., Atadja P., Chauhan D., Munshi N.C., et al. Aggresome induction by proteasome inhibitor bortezomib and alpha-tubulin hyperacetylation by tubulin deacetylase (TDAC) inhibitor LBH589 are synergistic in myeloma cells. Blood. 2006;108:3441–3449. doi: 10.1182/blood-2006-04-016055. PubMed DOI PMC
Arsov I., Adebayo A., Kucerova-Levisohn M., Haye J., MacNeil M., Papavasiliou F.N., Yue Z., Ortiz B.D. A role for autophagic protein beclin 1 early in lymphocyte development. J. Immunol. 2011;186:2201–2209. doi: 10.4049/jimmunol.1002223. PubMed DOI PMC
Shimizu S., Kanaseki T., Mizushima N., Mizuta T., Arakawa-Kobayashi S., Thompson C.B., Tsujimoto Y. Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat. Cell Biol. 2004;6:1221–1228. doi: 10.1038/ncb1192. PubMed DOI
Kroemer G., Levine B. Autophagic cell death: The story of a misnomer. Nat. Rev. Mol. Cell Biol. 2008;9:1004–1010. doi: 10.1038/nrm2529. PubMed DOI PMC
Yu L., Alva A., Su H., Dutt P., Freundt E., Welsh S., Baehrecke E.H., Lenardo M.J. Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science. 2004;304:1500–1502. doi: 10.1126/science.1096645. PubMed DOI
Schwarten M., Mohrluder J., Ma P., Stoldt M., Thielmann Y., Stangler T., Hersch N., Hoffmann B., Merkel R., Willbold D. Nix directly binds to GABARAP: A possible crosstalk between apoptosis and autophagy. Autophagy. 2009;5:690–698. doi: 10.4161/auto.5.5.8494. PubMed DOI
Ma Y., Galluzzi L., Zitvogel L., Kroemer G. Autophagy and cellular immune responses. Immunity. 2013;39:211–227. doi: 10.1016/j.immuni.2013.07.017. PubMed DOI
Kuballa P., Nolte W.M., Castoreno A.B., Xavier R.J. Autophagy and the immune system. Annu. Rev. Immunol. 2012;30:611–646. doi: 10.1146/annurev-immunol-020711-074948. PubMed DOI
Deretic V. Autophagy as an innate immunity paradigm: Expanding the scope and repertoire of pattern recognition receptors. Curr. Opin. Immunol. 2012;24:21–31. doi: 10.1016/j.coi.2011.10.006. PubMed DOI PMC
Deretic V. Autophagy: An emerging immunological paradigm. J. Immunol. 2012;189:15–20. doi: 10.4049/jimmunol.1102108. PubMed DOI PMC
Ma Y., Adjemian S., Mattarollo S.R., Yamazaki T., Aymeric L., Yang H., Portela Catani J.P., Hannani D., Duret H., Steegh K., et al. Anticancer chemotherapy-induced intratumoral recruitment and differentiation of antigen-presenting cells. Immunity. 2013;38:729–741. doi: 10.1016/j.immuni.2013.03.003. PubMed DOI
Dengjel J., Schoor O., Fischer R., Reich M., Kraus M., Muller M., Kreymborg K., Altenberend F., Brandenburg J., Kalbacher H., et al. Autophagy promotes MHC class II presentation of peptides from intracellular source proteins. Proc. Natl. Acad. Sci. USA. 2005;102:7922–7927. doi: 10.1073/pnas.0501190102. PubMed DOI PMC
Jia W., He Y.W. Temporal regulation of intracellular organelle homeostasis in T lymphocytes by autophagy. J. Immunol. 2011;186:5313–5322. doi: 10.4049/jimmunol.1002404. PubMed DOI
Nedjic J., Aichinger M., Emmerich J., Mizushima N., Klein L. Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance. Nature. 2008;455:396–400. doi: 10.1038/nature07208. PubMed DOI
Yun Z., Zhichao J., Hao Y., Ou J., Ran Y., Wen D., Qun S. Targeting autophagy in multiple myeloma. Leuk. Res. 2017;59:97–104. doi: 10.1016/j.leukres.2017.06.002. PubMed DOI
Dykstra K.M., Allen C., Born E.J., Tong H., Holstein S.A. Mechanisms for autophagy modulation by isoprenoid biosynthetic pathway inhibitors in multiple myeloma cells. Oncotarget. 2015;6:41535–41549. doi: 10.18632/oncotarget.6365. PubMed DOI PMC
Desantis V., Saltarella I., Lamanuzzi A., Mariggio M.A., Racanelli V., Vacca A., Frassanito M.A. Autophagy: A New Mechanism of Prosurvival and Drug Resistance in Multiple Myeloma. Transl. Oncol. 2018;11:1350–1357. doi: 10.1016/j.tranon.2018.08.014. PubMed DOI PMC
Escalante A.M., McGrath R.T., Karolak M.R., Dorr R.T., Lynch R.M., Landowski T.H. Preventing the autophagic survival response by inhibition of calpain enhances the cytotoxic activity of bortezomib in vitro and in vivo. Cancer Chemother. Pharmacol. 2013;71:1567–1576. doi: 10.1007/s00280-013-2156-3. PubMed DOI PMC
Vogl D.T., Stadtmauer E.A., Tan K.S., Heitjan D.F., Davis L.E., Pontiggia L., Rangwala R., Piao S., Chang Y.C., Scott E.C., et al. Combined autophagy and proteasome inhibition: A phase 1 trial of hydroxychloroquine and bortezomib in patients with relapsed/refractory myeloma. Autophagy. 2014;10:1380–1390. doi: 10.4161/auto.29264. PubMed DOI PMC
Tucci M., Stucci S., Savonarola A., Resta L., Cives M., Rossi R., Silvestris F. An imbalance between Beclin-1 and p62 expression promotes the proliferation of myeloma cells through autophagy regulation. Exp. Hematol. 2014;42:897–908.e1. doi: 10.1016/j.exphem.2014.06.005. PubMed DOI
Klionsky D.J., Petroni G., Amaravadi R.K., Baehrecke E.H., Ballabio A., Boya P., Bravo-San Pedro J.M., Cadwell K., Cecconi F., Choi A.M.K., et al. Autophagy in major human diseases. EMBO J. 2021;40:e108863. doi: 10.15252/embj.2021108863. PubMed DOI PMC
Liang C., Jung J.U. Autophagy genes as tumor suppressors. Curr. Opin. Cell Biol. 2010;22:226–233. doi: 10.1016/j.ceb.2009.11.003. PubMed DOI PMC
Huang X., Cao W., Yao S., Chen J., Liu Y., Qu J., Li Y., Han X., He J., Huang H., et al. NEDD4L binds the proteasome and promotes autophagy and bortezomib sensitivity in multiple myeloma. Cell Death Dis. 2022;13:197. doi: 10.1038/s41419-022-04629-8. PubMed DOI PMC
Jaganathan S., Malek E., Vallabhapurapu S., Vallabhapurapu S., Driscoll J.J. Bortezomib induces AMPK-dependent autophagosome formation uncoupled from apoptosis in drug resistant cells. Oncotarget. 2014;5:12358–12370. doi: 10.18632/oncotarget.2590. PubMed DOI PMC
Di Lernia G., Leone P., Solimando A.G., Buonavoglia A., Saltarella I., Ria R., Ditonno P., Silvestris N., Crudele L., Vacca A., et al. Bortezomib Treatment Modulates Autophagy in Multiple Myeloma. J. Clin. Med. 2020;9:552. doi: 10.3390/jcm9020552. PubMed DOI PMC
Cheng Y., Qi F., Li L., Qin Z., Li X., Wang X. Autophagy-related genes are potential diagnostic and prognostic biomarkers in prostate cancer. Transl. Androl. Urol. 2020;9:2616–2628. doi: 10.21037/tau-20-498. PubMed DOI PMC
Wang L., Fang D., Liu Y. Autophagy-related genes are potential diagnostic biomarkers for dermatomyositis. Ann. Transl. Med. 2022;10:228. doi: 10.21037/atm-22-70. PubMed DOI PMC
Zhu F.X., Wang X.T., Zeng H.Q., Yin Z.H., Ye Z.Z. A predicted risk score based on the expression of 16 autophagy-related genes for multiple myeloma survival. Oncol. Lett. 2019;18:5310–5324. doi: 10.3892/ol.2019.10881. PubMed DOI PMC
Went M., Sud A., Forsti A., Halvarsson B.M., Weinhold N., Kimber S., van Duin M., Thorleifsson G., Holroyd A., Johnson D.C., et al. Identification of multiple risk loci and regulatory mechanisms influencing susceptibility to multiple myeloma. Nat. Commun. 2018;9:3707. doi: 10.1038/s41467-018-08107-8. Correction in Nat. Commun. 2019, 10, 213. PubMed DOI PMC
Mitchell J.S., Li N., Weinhold N., Forsti A., Ali M., van Duin M., Thorleifsson G., Johnson D.C., Chen B., Halvarsson B.M., et al. Genome-wide association study identifies multiple susceptibility loci for multiple myeloma. Nat. Commun. 2016;7:12050. doi: 10.1038/ncomms12050. PubMed DOI PMC
Consortium G.T. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans. Science. 2015;348:648–660. doi: 10.1126/science.1262110. PubMed DOI PMC
Lappalainen T., Sammeth M., Friedlander M.R., t Hoen P.A., Monlong J., Rivas M.A., Gonzalez-Porta M., Kurbatova N., Griebel T., Ferreira P.G., et al. Transcriptome and genome sequencing uncovers functional variation in humans. Nature. 2013;501:506–511. doi: 10.1038/nature12531. PubMed DOI PMC
Alexandrakis M.G., Pappa C.A., Kokonozaki M., Boula A., Vyzoukaki R., Staphylaki D., Papadopoulou A., Androulakis N., Tsirakis G., Sfiridaki A. Circulating serum levels of IL-20 in multiple myeloma patients: Its significance in angiogenesis and disease activity. Med. Oncol. 2015;32:42. doi: 10.1007/s12032-015-0488-z. PubMed DOI
Westra H.J., Peters M.J., Esko T., Yaghootkar H., Schurmann C., Kettunen J., Christiansen M.W., Fairfax B.P., Schramm K., Powell J.E., et al. Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat. Genet. 2013;45:1238–1243. doi: 10.1038/ng.2756. PubMed DOI PMC
Hudlebusch H.R., Lodahl M., Johnsen H.E., Rasmussen T. Expression of HOXA genes in patients with multiple myeloma. Leuk. Lymphoma. 2004;45:1215–1217. doi: 10.1080/10428190310001625836. PubMed DOI
Fitzgerald K.A., McWhirter S.M., Faia K.L., Rowe D.C., Latz E., Golenbock D.T., Coyle A.J., Liao S.M., Maniatis T. IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat. Immunol. 2003;4:491–496. doi: 10.1038/ni921. PubMed DOI
Chau T.L., Gioia R., Gatot J.S., Patrascu F., Carpentier I., Chapelle J.P., O’Neill L., Beyaert R., Piette J., Chariot A. Are the IKKs and IKK-related kinases TBK1 and IKK-epsilon similarly activated? Trends Biochem. Sci. 2008;33:171–180. doi: 10.1016/j.tibs.2008.01.002. PubMed DOI
Leich E., Weissbach S., Klein H.U., Grieb T., Pischimarov J., Stuhmer T., Chatterjee M., Steinbrunn T., Langer C., Eilers M., et al. Multiple myeloma is affected by multiple and heterogeneous somatic mutations in adhesion- and receptor tyrosine kinase signaling molecules. Blood Cancer J. 2013;3:e102. doi: 10.1038/bcj.2012.47. PubMed DOI PMC
Gilad N., Zukerman H., Pick M., Gatt M.E. The role of CD24 in multiple myeloma tumorigenicity and effects of the microenvironment on its expression. Oncotarget. 2019;10:5480–5491. doi: 10.18632/oncotarget.27190. PubMed DOI PMC
Ullah T.R. The role of CXCR4 in multiple myeloma: Cells’ journey from bone marrow to beyond. J. Bone Oncol. 2019;17:100253. doi: 10.1016/j.jbo.2019.100253. PubMed DOI PMC
Gross Even-Zohar N., Pick M., Hofstetter L., Shaulov A., Nachmias B., Lebel E., Gatt M.E. CD24 Is a Prognostic Marker for Multiple Myeloma Progression and Survival. J. Clin. Med. 2022;11:2913. doi: 10.3390/jcm11102913. PubMed DOI PMC
Gschwandtner M., Derler R., Midwood K.S. More Than Just Attractive: How CCL2 Influences Myeloid Cell Behavior Beyond Chemotaxis. Front. Immunol. 2019;10:2759. doi: 10.3389/fimmu.2019.02759. PubMed DOI PMC
Valkovic T., Babarovic E., Lucin K., Stifter S., Aralica M., Seili-Bekafigo I., Duletic-Nacinovic A., Jonjic N. Plasma Levels of Monocyte Chemotactic Protein-1 Are Associated with Clinical Features and Angiogenesis in Patients with Multiple Myeloma. Biomed. Res. Int. 2016;2016:7870590. doi: 10.1155/2016/7870590. PubMed DOI PMC
Broek I.V., Asosingh K., Vanderkerken K., Straetmans N., Van Camp B., Van Riet I. Chemokine receptor CCR2 is expressed by human multiple myeloma cells and mediates migration to bone marrow stromal cell-produced monocyte chemotactic proteins MCP-1, -2 and -3. Br. J. Cancer. 2003;88:855–862. doi: 10.1038/sj.bjc.6600833. PubMed DOI PMC
Sukhdeo K., Mani M., Zhang Y., Dutta J., Yasui H., Rooney M.D., Carrasco D.E., Zheng M., He H., Tai Y.T., et al. Targeting the beta-catenin/TCF transcriptional complex in the treatment of multiple myeloma. Proc. Natl. Acad. Sci. USA. 2007;104:7516–7521. doi: 10.1073/pnas.0610299104. PubMed DOI PMC
Gyory I., Fejer G., Ghosh N., Seto E., Wright K.L. Identification of a functionally impaired positive regulatory domain I binding factor 1 transcription repressor in myeloma cell lines. J. Immunol. 2003;170:3125–3133. doi: 10.4049/jimmunol.170.6.3125. PubMed DOI
Fan F., Podar K. The Role of AP-1 Transcription Factors in Plasma Cell Biology and Multiple Myeloma Pathophysiology. Cancers. 2021;13:2326. doi: 10.3390/cancers13102326. PubMed DOI PMC
Jovanovic K.K., Roche-Lestienne C., Ghobrial I.M., Facon T., Quesnel B., Manier S. Targeting MYC in multiple myeloma. Leukemia. 2018;32:1295–1306. doi: 10.1038/s41375-018-0036-x. PubMed DOI
Jin Z., Zhou S., Ye H., Jiang S., Yu K., Ma Y. The mechanism of SP1/p300 complex promotes proliferation of multiple myeloma cells through regulating IQGAP1 transcription. Biomed. Pharmacother. 2019;119:109434. doi: 10.1016/j.biopha.2019.109434. PubMed DOI
Viziteu E., Grandmougin C., Goldschmidt H., Seckinger A., Hose D., Klein B., Moreaux J. Chetomin, targeting HIF-1alpha/p300 complex, exhibits antitumour activity in multiple myeloma. Br. J. Cancer. 2016;114:519–523. doi: 10.1038/bjc.2016.20. PubMed DOI PMC
Gong Y., Zack T.I., Morris L.G., Lin K., Hukkelhoven E., Raheja R., Tan I.L., Turcan S., Veeriah S., Meng S., et al. Pan-cancer genetic analysis identifies PARK2 as a master regulator of G1/S cyclins. Nat. Genet. 2014;46:588–594. doi: 10.1038/ng.2981. PubMed DOI PMC
Tanaka A. Parkin-mediated selective mitochondrial autophagy, mitophagy: Parkin purges damaged organelles from the vital mitochondrial network. FEBS Lett. 2010;584:1386–1392. doi: 10.1016/j.febslet.2010.02.060. PubMed DOI PMC
Kay D.M., Stevens C.F., Hamza T.H., Montimurro J.S., Zabetian C.P., Factor S.A., Samii A., Griffith A., Roberts J.W., Molho E.S., et al. A comprehensive analysis of deletions, multiplications, and copy number variations in PARK2. Neurology. 2010;75:1189–1194. doi: 10.1212/WNL.0b013e3181f4d832. PubMed DOI PMC
Broderick P., Chubb D., Johnson D.C., Weinhold N., Forsti A., Lloyd A., Olver B., Ma Y., Dobbins S.E., Walker B.A., et al. Common variation at 3p22.1 and 7p15.3 influences multiple myeloma risk. Nat. Genet. 2011;44:58–61. doi: 10.1038/ng.993. PubMed DOI PMC
Levy D., Ehret G.B., Rice K., Verwoert G.C., Launer L.J., Dehghan A., Glazer N.L., Morrison A.C., Johnson A.D., Aspelund T., et al. Genome-wide association study of blood pressure and hypertension. Nat. Genet. 2009;41:677–687. doi: 10.1038/ng.384. PubMed DOI PMC
Folkersen L., van’t Hooft F., Chernogubova E., Agardh H.E., Hansson G.K., Hedin U., Liska J., Syvanen A.C., Paulsson-Berne G., Franco-Cereceda A., et al. Association of genetic risk variants with expression of proximal genes identifies novel susceptibility genes for cardiovascular disease. Circ. Cardiovasc. Genet. 2010;3:365–373. doi: 10.1161/CIRCGENETICS.110.948935. PubMed DOI
Cross H.S., Lipkin M., Kallay E. Nutrients regulate the colonic vitamin D system in mice: Relevance for human colon malignancy. J. Nutr. 2006;136:561–564. doi: 10.1093/jn/136.3.561. PubMed DOI
Pendas-Franco N., Aguilera O., Pereira F., Gonzalez-Sancho J.M., Munoz A. Vitamin D and Wnt/beta-catenin pathway in colon cancer: Role and regulation of DICKKOPF genes. Anticancer Res. 2008;28:2613–2623. PubMed
Rohan J.N., Weigel N.L. 1Alpha,25-dihydroxyvitamin D3 reduces c-Myc expression, inhibiting proliferation and causing G1 accumulation in C4-2 prostate cancer cells. Endocrinology. 2009;150:2046–2054. doi: 10.1210/en.2008-1395. PubMed DOI PMC
Clay-Gilmour A.I., Hildebrandt M.A.T., Brown E.E., Hofmann J.N., Spinelli J.J., Giles G.G., Cozen W., Bhatti P., Wu X., Waller R.G., et al. Coinherited genetics of multiple myeloma and its precursor, monoclonal gammopathy of undetermined significance. Blood Adv. 2020;4:2789–2797. doi: 10.1182/bloodadvances.2020001435. PubMed DOI PMC
Yousefi S., Perozzo R., Schmid I., Ziemiecki A., Schaffner T., Scapozza L., Brunner T., Simon H.U. Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat. Cell Biol. 2006;8:1124–1132. doi: 10.1038/ncb1482. PubMed DOI
Heuck C.J., Mehta J., Bhagat T., Gundabolu K., Yu Y., Khan S., Chrysofakis G., Schinke C., Tariman J., Vickrey E., et al. Myeloma is characterized by stage-specific alterations in DNA methylation that occur early during myelomagenesis. J. Immunol. 2013;190:2966–2975. doi: 10.4049/jimmunol.1202493. PubMed DOI PMC
Dilworth D., Liu L., Stewart A.K., Berenson J.R., Lassam N., Hogg D. Germline CDKN2A mutation implicated in predisposition to multiple myeloma. Blood. 2000;95:1869–1871. doi: 10.1182/blood.V95.5.1869.005k09_1869_1871. PubMed DOI
Shah V., Boyd K.D., Houlston R.S., Kaiser M.F. Constitutional mutation in CDKN2A is associated with long term survivorship in multiple myeloma: A case report. BMC Cancer. 2017;17:718. doi: 10.1186/s12885-017-3715-5. PubMed DOI PMC
Kay N.E., Leong T., Bone N., Kyle R.A., Greipp P.R., Van Ness B., Oken M.M. T-helper phenotypes in the blood of myeloma patients on ECOG phase III trials E9486/E3A93. Br. J. Haematol. 1998;100:459–463. doi: 10.1046/j.1365-2141.1998.00609.x. PubMed DOI
Zeller T., Wild P., Szymczak S., Rotival M., Schillert A., Castagne R., Maouche S., Germain M., Lackner K., Rossmann H., et al. Genetics and beyond--the transcriptome of human monocytes and disease susceptibility. PLoS ONE. 2010;5:e10693. doi: 10.1371/journal.pone.0010693. PubMed DOI PMC
Rios-Tamayo R., Lupianez C.B., Campa D., Hielscher T., Weinhold N., Martinez-Lopez J., Jerez A., Landi S., Jamroziak K., Dumontet C., et al. A common variant within the HNF1B gene is associated with overall survival of multiple myeloma patients: Results from the IMMEnSE consortium and meta-analysis. Oncotarget. 2016;7:59029–59048. doi: 10.18632/oncotarget.10665. PubMed DOI PMC
International Myeloma Working Group Criteria for the classification of monoclonal gammopathies, multiple myeloma and related disorders: A report of the International Myeloma Working Group. Br. J. Haematol. 2003;121:749–757. doi: 10.1046/j.1365-2141.2003.04355.x. PubMed DOI
Rajkumar S.V., Dimopoulos M.A., Palumbo A., Blade J., Merlini G., Mateos M.V., Kumar S., Hillengass J., Kastritis E., Richardson P., et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014;15:e538–e548. doi: 10.1016/S1470-2045(14)70442-5. PubMed DOI
Howie B.N., Donnelly P., Marchini J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 2009;5:e1000529. doi: 10.1371/journal.pgen.1000529. PubMed DOI PMC
Willer C.J., Li Y., Abecasis G.R. METAL: Fast and efficient meta-analysis of genomewide association scans. Bioinformatics. 2010;26:2190–2191. doi: 10.1093/bioinformatics/btq340. PubMed DOI PMC
Martino A., Sainz J., Buda G., Jamroziak K., Reis R.M., Garcia-Sanz R., Jurado M., Rios R., Szemraj-Rogucka Z., Marques H., et al. Genetics and molecular epidemiology of multiple myeloma: The rationale for the IMMEnSE consortium (review) Int. J. Oncol. 2012;40:625–638. doi: 10.3892/ijo.2011.1284. PubMed DOI
Manuel Sanchez-Maldonado J., Martinez-Bueno M., Canhao H., Ter Horst R., Munoz-Pena S., Moniz-Diez A., Rodriguez-Ramos A., Escudero A., Sorensen S.B., Hetland M.L., et al. NFKB2 polymorphisms associate with the risk of developing rheumatoid arthritis and response to TNF inhibitors: Results from the REPAIR consortium. Sci. Rep. 2020;10:4316. doi: 10.1038/s41598-020-61331-5. PubMed DOI PMC
Li Y., Oosting M., Smeekens S.P., Jaeger M., Aguirre-Gamboa R., Le K.T.T., Deelen P., Ricano-Ponce I., Schoffelen T., Jansen A.F.M., et al. A Functional Genomics Approach to Understand Variation in Cytokine Production in Humans. Cell. 2016;167:1099–1110.e14. doi: 10.1016/j.cell.2016.10.017. PubMed DOI
Aguirre-Gamboa R., Joosten I., Urbano P.C.M., van der Molen R.G., van Rijssen E., van Cranenbroek B., Oosting M., Smeekens S., Jaeger M., Zorro M., et al. Differential Effects of Environmental and Genetic Factors on T and B Cell Immune Traits. Cell Rep. 2016;17:2474–2487. doi: 10.1016/j.celrep.2016.10.053. PubMed DOI PMC