• This record comes from PubMed

Polymorphisms within Autophagy-Related Genes as Susceptibility Biomarkers for Multiple Myeloma: A Meta-Analysis of Three Large Cohorts and Functional Characterization

. 2023 May 09 ; 24 (10) : . [epub] 20230509

Language English Country Switzerland Media electronic

Document type Meta-Analysis, Journal Article

Grant support
U01CA249955 (EEB) National Cancer Institute of the National Institutes of Health
U01 CA249955 NCI NIH HHS - United States
R01 CA186646 NCI NIH HHS - United States
R01CA186646 National Cancer Institute of the National Institutes of Health
PI17/02256 Instituto de Salud Carlos III
PI20/01845 Instituto de Salud Carlos III
RD12/10 Red de Cáncer the CRIS foundation against cancer, from the Cancer Network of Excellence
BMBF: CLIOMMICS [01ZX1309] the Dietmar Hopp Foundation and the German Ministry of Education and Science

Multiple myeloma (MM) arises following malignant proliferation of plasma cells in the bone marrow, that secrete high amounts of specific monoclonal immunoglobulins or light chains, resulting in the massive production of unfolded or misfolded proteins. Autophagy can have a dual role in tumorigenesis, by eliminating these abnormal proteins to avoid cancer development, but also ensuring MM cell survival and promoting resistance to treatments. To date no studies have determined the impact of genetic variation in autophagy-related genes on MM risk. We performed meta-analysis of germline genetic data on 234 autophagy-related genes from three independent study populations including 13,387 subjects of European ancestry (6863 MM patients and 6524 controls) and examined correlations of statistically significant single nucleotide polymorphisms (SNPs; p < 1 × 10-9) with immune responses in whole blood, peripheral blood mononuclear cells (PBMCs), and monocyte-derived macrophages (MDM) from a large population of healthy donors from the Human Functional Genomic Project (HFGP). We identified SNPs in six loci, CD46, IKBKE, PARK2, ULK4, ATG5, and CDKN2A associated with MM risk (p = 4.47 × 10-4-5.79 × 10-14). Mechanistically, we found that the ULK4rs6599175 SNP correlated with circulating concentrations of vitamin D3 (p = 4.0 × 10-4), whereas the IKBKErs17433804 SNP correlated with the number of transitional CD24+CD38+ B cells (p = 4.8 × 10-4) and circulating serum concentrations of Monocyte Chemoattractant Protein (MCP)-2 (p = 3.6 × 10-4). We also found that the CD46rs1142469 SNP correlated with numbers of CD19+ B cells, CD19+CD3- B cells, CD5+IgD- cells, IgM- cells, IgD-IgM- cells, and CD4-CD8- PBMCs (p = 4.9 × 10-4-8.6 × 10-4) and circulating concentrations of interleukin (IL)-20 (p = 0.00082). Finally, we observed that the CDKN2Ars2811710 SNP correlated with levels of CD4+EMCD45RO+CD27- cells (p = 9.3 × 10-4). These results suggest that genetic variants within these six loci influence MM risk through the modulation of specific subsets of immune cells, as well as vitamin D3-, MCP-2-, and IL20-dependent pathways.

Alfred Sokolowski Specialist Hospital in Walbrzych Oncology Support Centre for Clinical Trials 58 309 Walbrzych Poland

Cancer Control Research BC Cancer Vancouver BC V5Z 4E6 Canada

Cancer Epidemiology Division Cancer Council Victoria Melbourne VIC 3004 Australia

CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences 1090 Vienna Austria

Centre for Epidemiology and Biostatistics School of Population and Global Health The University of Melbourne Melbourne VIC 3010 Australia

Centre for Individualised Infection Medicine 30625 Hannover Germany

Department for Immunology and Metabolism Life and Medical Sciences Institute University of Bonn 53115 Bonn Germany

Department of Biochemistry and Molecular Biology 1 University of Granada 18071 Granada Spain

Department of Biology University of Pisa 56126 Pisa Italy

Department of Biostatistics and Epidemiology Arnold School of Public Health University of South Carolina Greenville SC 29208 USA

Department of Cancer Prevention and Therapy Wroclaw Medical University 50 367 Wroclaw Poland

Department of Hematology and Transplantology Medical University of Gdansk 80 210 Gdansk Poland

Department of Hematology Experimental Hematology Unit Vall d'Hebron Institute of Oncology University Hospital Vall d'Hebron 08035 Barcelona Spain

Department of Hematology Hospital del Mar 08003 Barcelona Spain

Department of Hematology Institute of Medical Sciences College of Medical Sciences University of Rzeszow 35 310 Rzeszow Poland

Department of Hematology Medical University of Lodz 90 419 Lodz Poland

Department of Hematology Military Institute of Medicine 04 141 Warsaw Poland

Department of Hematology Odense University Hospital DK 5000 Odense Denmark

Department of Hematology Rigshospitalet Copenhagen University DK 2100 Copenhagen Denmark

Department of Hematology Rydygier Hospital 31 826 Cracow Poland

Department of Hematology Specialist Hospital No 1 in Bytom Academy of Silesia Faculty of Medicine 40 055 Katowice Poland

Department of Hematology Transplantology and Internal Medicine Medical University of Warsaw 02 097 Warsaw Poland

Department of Hematology University Hospital 30 688 Kraków Poland

Department of Hematology University Hospital No 2 85 168 Bydgoszcz Poland

Department of Hematooncology and Bone Marrow Transplantation Medical University of Lublin 20 059 Lublin Poland

Department of Internal Diseases Occupational Medicine Hypertension and Clinical Oncology Wroclaw Medical University 50 368 Wroclaw Poland

Department of Internal Medicine 5 University of Heidelberg 69120 Heidelberg Germany

Department of Internal Medicine and Radboud Center for Infectious Diseases Radboud University Medical Center 6525 GA Nijmegen The Netherlands

Department of Lymphoma Myeloma Division of Cancer Medicine The University of Texas MD Anderson Cancer Center Houston TX 77030 USA

Department of Lymphoproliferative Diseases Maria Skłodowska Curie National Research Institute of Oncology 02 781 Warsaw Poland

Department of Medical Oncology Complejo Hospitalario de Jaén 23007 Jaén Spain

Department of Medicine University of California San Francisco Helen Diller Family Comprehensive Cancer Center San Francisco CA 94143 USA

Department of Medicine University of Granada 18012 Granada Spain

Department of Pathology Heersink School of Medicine The University of Alabama at Birmingham Birmingham AL 35294 USA

Diagnostic Laboratory Unit in Hematology University Hospital of Salamanca IBSAL CIBERONC Centro de Investigación del Cáncer IBMCC 37007 Salamanca Spain

Division of Cancer Epidemiology and Genetics National Cancer Institute National Institutes of Health Bethesda MD 20892 USA

Division of Cancer Epidemiology German Cancer Research Center Im Neuenheimer Feld 280 69120 Heidelberg Germany

Division of Epidemiology Department of Health Sciences Research Mayo Clinic Rochester MN 55902 USA

Division of Hematology Department of Internal Medicine Mayo Clinic Rochester MN 55902 USA

Division of Hematology Huntsman Cancer Institute University of Utah Salt Lake City UT 84112 USA

Division of Hematology Oncology Department of Medicine School of Medicine Department of Pathology School of Medicine Susan and Henry Samueli College of Health Sciences Chao Family Comprehensive Cancer Center University of California at Irvine Irvine CA 92697 USA

Division of Molecular Genetic Epidemiology German Cancer Research Center Im Neuenheimer Feld 580 D 69120 Heidelberg Germany

Division of Pediatric Neurooncology German Cancer Research Center 69120 Heidelberg Germany

Division of Population Oncology BC Cancer Vancouver BC V5Z 4E6 Canada

Faculty of Medicine and Biomedical Center in Pilsen Charles University Prague 30605 Pilsen Czech Republic

Genetic Epidemiology and Risk Assessment Program Mayo Clinic Comprehensive Cancer Center Division of Biomedical Statistics and Informatics Department of Health Sciences Research Mayo Clinic Rochester MN 55902 USA

Genomic Epidemiology Group German Cancer Research Center 69120 Heidelberg Germany

Genomic Oncology Area GENYO Centre for Genomics and Oncological Research Pfizer University of Granada Andalusian Regional Government PTS 18016 Granada Spain

Haematology Unit Department of Clinical and Experimental Medicine University of Pisa AOUP 56126 Pisa Italy

Hematology Department Virgen de las Nieves University Hospital 18012 Granada Spain

Hematology Division Chaim Sheba Medical Center Tel Hashomer 52621 Israel

Holycross Medical Oncology Center 25 735 Kielce Poland

Hopp Children's Cancer Center 69120 Heidelberg Germany

Hospital 12 de Octubre Complutense University CNIO CIBERONC 28041 Madrid Spain

Institute of Bioinformatics International Technology Park Bangalore 560066 India

Institute of Hematology and Transfusion Medicine 00 791 Warsaw Poland

Instituto de Investigación Biosanataria IBs Granada 18014 Granada Spain

Life and Health Sciences Research Institute School of Health Sciences University of Minho 4710 057 Braga Portugal and ICVS 3B's PT Government Associate Laboratory 4710 057 Braga Guimarães Portugal

Life and Health Sciences Research Institute School of Medicine University of Minho 4710 057 Braga Portugal

Manipal Academy of Higher Education Manipal 576104 India

Molecular Diagnostics and Clinical Research Unit Institute of Regional Health Research University Hospital of Southern Denmark DK 6200 Aabenraa Denmark

Molecular Oncology Research Center Barretos Cancer Hospital Barretos 14784 400 Brazil

Myeloma Institute University of Arkansas for Medical Sciences Little Rock AR 72205 USA

National Research Centre for the Working Environment DK 2100 Copenhagen Denmark

Plasma Cell Dyscrasias Center Department of Hematology Jagiellonian University Medical College 31 066 Kraków Poland

Precision Medicine School of Clinical Sciences at Monash Health Monash University Clayton VIC 3168 Australia

Program in Epidemiology Public Health Sciences Division Fred Hutchinson Cancer Research Center Seattle WA 98109 USA

School of Population and Public Health University of British Columbia Vancouver BC V6T 1Z4 Canada

Semmelweis University 1083 Budapest Hungary

St Johns Hospital 62769 Budapest Hungary

U O Dipartimento di Ematologia Azienda USL Toscana Nord Ovest 57124 Livorno Italy

UMR INSERM 1052 CNRS 5286 University of Lyon Hospices Civils de Lyon 69008 Lyon France

See more in PubMed

Palumbo A., Anderson K. Multiple myeloma. N. Engl. J. Med. 2011;364:1046–1060. doi: 10.1056/NEJMra1011442. PubMed DOI

Kyle R.A., Gertz M.A., Witzig T.E., Lust J.A., Lacy M.Q., Dispenzieri A., Fonseca R., Rajkumar S.V., Offord J.R., Larson D.R., et al. Review of 1027 patients with newly diagnosed multiple myeloma. Mayo Clin. Proc. 2003;78:21–33. doi: 10.4065/78.1.21. PubMed DOI

Kastritis E., Zagouri F., Symeonidis A., Roussou M., Sioni A., Pouli A., Delimpasi S., Katodritou E., Michalis E., Michael M., et al. Preserved levels of uninvolved immunoglobulins are independently associated with favorable outcome in patients with symptomatic multiple myeloma. Leukemia. 2014;28:2075–2079. doi: 10.1038/leu.2014.110. PubMed DOI

Bradwell A., Harding S., Fourrier N., Mathiot C., Attal M., Moreau P., Harousseau J.L., Avet-Loiseau H. Prognostic utility of intact immunoglobulin Ig’kappa/Ig’lambda ratios in multiple myeloma patients. Leukemia. 2013;27:202–207. doi: 10.1038/leu.2012.159. PubMed DOI PMC

Hoang B., Benavides A., Shi Y., Frost P., Lichtenstein A. Effect of autophagy on multiple myeloma cell viability. Mol. Cancer Ther. 2009;8:1974–1984. doi: 10.1158/1535-7163.MCT-08-1177. PubMed DOI

Obeng E.A., Carlson L.M., Gutman D.M., Harrington W.J., Jr., Lee K.P., Boise L.H. Proteasome inhibitors induce a terminal unfolded protein response in multiple myeloma cells. Blood. 2006;107:4907–4916. doi: 10.1182/blood-2005-08-3531. PubMed DOI PMC

Lee A.H., Iwakoshi N.N., Anderson K.C., Glimcher L.H. Proteasome inhibitors disrupt the unfolded protein response in myeloma cells. Proc. Natl. Acad. Sci. USA. 2003;100:9946–9951. doi: 10.1073/pnas.1334037100. PubMed DOI PMC

Landowski T.H., Megli C.J., Nullmeyer K.D., Lynch R.M., Dorr R.T. Mitochondrial-mediated disregulation of Ca2+ is a critical determinant of Velcade (PS-341/bortezomib) cytotoxicity in myeloma cell lines. Cancer Res. 2005;65:3828–3836. doi: 10.1158/0008-5472.CAN-04-3684. PubMed DOI

Mitsiades C.S., Mitsiades N.S., McMullan C.J., Poulaki V., Kung A.L., Davies F.E., Morgan G., Akiyama M., Shringarpure R., Munshi N.C., et al. Antimyeloma activity of heat shock protein-90 inhibition. Blood. 2006;107:1092–1100. doi: 10.1182/blood-2005-03-1158. PubMed DOI PMC

Catley L., Weisberg E., Kiziltepe T., Tai Y.T., Hideshima T., Neri P., Tassone P., Atadja P., Chauhan D., Munshi N.C., et al. Aggresome induction by proteasome inhibitor bortezomib and alpha-tubulin hyperacetylation by tubulin deacetylase (TDAC) inhibitor LBH589 are synergistic in myeloma cells. Blood. 2006;108:3441–3449. doi: 10.1182/blood-2006-04-016055. PubMed DOI PMC

Arsov I., Adebayo A., Kucerova-Levisohn M., Haye J., MacNeil M., Papavasiliou F.N., Yue Z., Ortiz B.D. A role for autophagic protein beclin 1 early in lymphocyte development. J. Immunol. 2011;186:2201–2209. doi: 10.4049/jimmunol.1002223. PubMed DOI PMC

Shimizu S., Kanaseki T., Mizushima N., Mizuta T., Arakawa-Kobayashi S., Thompson C.B., Tsujimoto Y. Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat. Cell Biol. 2004;6:1221–1228. doi: 10.1038/ncb1192. PubMed DOI

Kroemer G., Levine B. Autophagic cell death: The story of a misnomer. Nat. Rev. Mol. Cell Biol. 2008;9:1004–1010. doi: 10.1038/nrm2529. PubMed DOI PMC

Yu L., Alva A., Su H., Dutt P., Freundt E., Welsh S., Baehrecke E.H., Lenardo M.J. Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science. 2004;304:1500–1502. doi: 10.1126/science.1096645. PubMed DOI

Schwarten M., Mohrluder J., Ma P., Stoldt M., Thielmann Y., Stangler T., Hersch N., Hoffmann B., Merkel R., Willbold D. Nix directly binds to GABARAP: A possible crosstalk between apoptosis and autophagy. Autophagy. 2009;5:690–698. doi: 10.4161/auto.5.5.8494. PubMed DOI

Ma Y., Galluzzi L., Zitvogel L., Kroemer G. Autophagy and cellular immune responses. Immunity. 2013;39:211–227. doi: 10.1016/j.immuni.2013.07.017. PubMed DOI

Kuballa P., Nolte W.M., Castoreno A.B., Xavier R.J. Autophagy and the immune system. Annu. Rev. Immunol. 2012;30:611–646. doi: 10.1146/annurev-immunol-020711-074948. PubMed DOI

Deretic V. Autophagy as an innate immunity paradigm: Expanding the scope and repertoire of pattern recognition receptors. Curr. Opin. Immunol. 2012;24:21–31. doi: 10.1016/j.coi.2011.10.006. PubMed DOI PMC

Deretic V. Autophagy: An emerging immunological paradigm. J. Immunol. 2012;189:15–20. doi: 10.4049/jimmunol.1102108. PubMed DOI PMC

Ma Y., Adjemian S., Mattarollo S.R., Yamazaki T., Aymeric L., Yang H., Portela Catani J.P., Hannani D., Duret H., Steegh K., et al. Anticancer chemotherapy-induced intratumoral recruitment and differentiation of antigen-presenting cells. Immunity. 2013;38:729–741. doi: 10.1016/j.immuni.2013.03.003. PubMed DOI

Dengjel J., Schoor O., Fischer R., Reich M., Kraus M., Muller M., Kreymborg K., Altenberend F., Brandenburg J., Kalbacher H., et al. Autophagy promotes MHC class II presentation of peptides from intracellular source proteins. Proc. Natl. Acad. Sci. USA. 2005;102:7922–7927. doi: 10.1073/pnas.0501190102. PubMed DOI PMC

Jia W., He Y.W. Temporal regulation of intracellular organelle homeostasis in T lymphocytes by autophagy. J. Immunol. 2011;186:5313–5322. doi: 10.4049/jimmunol.1002404. PubMed DOI

Nedjic J., Aichinger M., Emmerich J., Mizushima N., Klein L. Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance. Nature. 2008;455:396–400. doi: 10.1038/nature07208. PubMed DOI

Yun Z., Zhichao J., Hao Y., Ou J., Ran Y., Wen D., Qun S. Targeting autophagy in multiple myeloma. Leuk. Res. 2017;59:97–104. doi: 10.1016/j.leukres.2017.06.002. PubMed DOI

Dykstra K.M., Allen C., Born E.J., Tong H., Holstein S.A. Mechanisms for autophagy modulation by isoprenoid biosynthetic pathway inhibitors in multiple myeloma cells. Oncotarget. 2015;6:41535–41549. doi: 10.18632/oncotarget.6365. PubMed DOI PMC

Desantis V., Saltarella I., Lamanuzzi A., Mariggio M.A., Racanelli V., Vacca A., Frassanito M.A. Autophagy: A New Mechanism of Prosurvival and Drug Resistance in Multiple Myeloma. Transl. Oncol. 2018;11:1350–1357. doi: 10.1016/j.tranon.2018.08.014. PubMed DOI PMC

Escalante A.M., McGrath R.T., Karolak M.R., Dorr R.T., Lynch R.M., Landowski T.H. Preventing the autophagic survival response by inhibition of calpain enhances the cytotoxic activity of bortezomib in vitro and in vivo. Cancer Chemother. Pharmacol. 2013;71:1567–1576. doi: 10.1007/s00280-013-2156-3. PubMed DOI PMC

Vogl D.T., Stadtmauer E.A., Tan K.S., Heitjan D.F., Davis L.E., Pontiggia L., Rangwala R., Piao S., Chang Y.C., Scott E.C., et al. Combined autophagy and proteasome inhibition: A phase 1 trial of hydroxychloroquine and bortezomib in patients with relapsed/refractory myeloma. Autophagy. 2014;10:1380–1390. doi: 10.4161/auto.29264. PubMed DOI PMC

Tucci M., Stucci S., Savonarola A., Resta L., Cives M., Rossi R., Silvestris F. An imbalance between Beclin-1 and p62 expression promotes the proliferation of myeloma cells through autophagy regulation. Exp. Hematol. 2014;42:897–908.e1. doi: 10.1016/j.exphem.2014.06.005. PubMed DOI

Klionsky D.J., Petroni G., Amaravadi R.K., Baehrecke E.H., Ballabio A., Boya P., Bravo-San Pedro J.M., Cadwell K., Cecconi F., Choi A.M.K., et al. Autophagy in major human diseases. EMBO J. 2021;40:e108863. doi: 10.15252/embj.2021108863. PubMed DOI PMC

Liang C., Jung J.U. Autophagy genes as tumor suppressors. Curr. Opin. Cell Biol. 2010;22:226–233. doi: 10.1016/j.ceb.2009.11.003. PubMed DOI PMC

Huang X., Cao W., Yao S., Chen J., Liu Y., Qu J., Li Y., Han X., He J., Huang H., et al. NEDD4L binds the proteasome and promotes autophagy and bortezomib sensitivity in multiple myeloma. Cell Death Dis. 2022;13:197. doi: 10.1038/s41419-022-04629-8. PubMed DOI PMC

Jaganathan S., Malek E., Vallabhapurapu S., Vallabhapurapu S., Driscoll J.J. Bortezomib induces AMPK-dependent autophagosome formation uncoupled from apoptosis in drug resistant cells. Oncotarget. 2014;5:12358–12370. doi: 10.18632/oncotarget.2590. PubMed DOI PMC

Di Lernia G., Leone P., Solimando A.G., Buonavoglia A., Saltarella I., Ria R., Ditonno P., Silvestris N., Crudele L., Vacca A., et al. Bortezomib Treatment Modulates Autophagy in Multiple Myeloma. J. Clin. Med. 2020;9:552. doi: 10.3390/jcm9020552. PubMed DOI PMC

Cheng Y., Qi F., Li L., Qin Z., Li X., Wang X. Autophagy-related genes are potential diagnostic and prognostic biomarkers in prostate cancer. Transl. Androl. Urol. 2020;9:2616–2628. doi: 10.21037/tau-20-498. PubMed DOI PMC

Wang L., Fang D., Liu Y. Autophagy-related genes are potential diagnostic biomarkers for dermatomyositis. Ann. Transl. Med. 2022;10:228. doi: 10.21037/atm-22-70. PubMed DOI PMC

Zhu F.X., Wang X.T., Zeng H.Q., Yin Z.H., Ye Z.Z. A predicted risk score based on the expression of 16 autophagy-related genes for multiple myeloma survival. Oncol. Lett. 2019;18:5310–5324. doi: 10.3892/ol.2019.10881. PubMed DOI PMC

Went M., Sud A., Forsti A., Halvarsson B.M., Weinhold N., Kimber S., van Duin M., Thorleifsson G., Holroyd A., Johnson D.C., et al. Identification of multiple risk loci and regulatory mechanisms influencing susceptibility to multiple myeloma. Nat. Commun. 2018;9:3707. doi: 10.1038/s41467-018-08107-8. Correction in Nat. Commun. 2019, 10, 213. PubMed DOI PMC

Mitchell J.S., Li N., Weinhold N., Forsti A., Ali M., van Duin M., Thorleifsson G., Johnson D.C., Chen B., Halvarsson B.M., et al. Genome-wide association study identifies multiple susceptibility loci for multiple myeloma. Nat. Commun. 2016;7:12050. doi: 10.1038/ncomms12050. PubMed DOI PMC

Consortium G.T. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans. Science. 2015;348:648–660. doi: 10.1126/science.1262110. PubMed DOI PMC

Lappalainen T., Sammeth M., Friedlander M.R., t Hoen P.A., Monlong J., Rivas M.A., Gonzalez-Porta M., Kurbatova N., Griebel T., Ferreira P.G., et al. Transcriptome and genome sequencing uncovers functional variation in humans. Nature. 2013;501:506–511. doi: 10.1038/nature12531. PubMed DOI PMC

Alexandrakis M.G., Pappa C.A., Kokonozaki M., Boula A., Vyzoukaki R., Staphylaki D., Papadopoulou A., Androulakis N., Tsirakis G., Sfiridaki A. Circulating serum levels of IL-20 in multiple myeloma patients: Its significance in angiogenesis and disease activity. Med. Oncol. 2015;32:42. doi: 10.1007/s12032-015-0488-z. PubMed DOI

Westra H.J., Peters M.J., Esko T., Yaghootkar H., Schurmann C., Kettunen J., Christiansen M.W., Fairfax B.P., Schramm K., Powell J.E., et al. Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat. Genet. 2013;45:1238–1243. doi: 10.1038/ng.2756. PubMed DOI PMC

Hudlebusch H.R., Lodahl M., Johnsen H.E., Rasmussen T. Expression of HOXA genes in patients with multiple myeloma. Leuk. Lymphoma. 2004;45:1215–1217. doi: 10.1080/10428190310001625836. PubMed DOI

Fitzgerald K.A., McWhirter S.M., Faia K.L., Rowe D.C., Latz E., Golenbock D.T., Coyle A.J., Liao S.M., Maniatis T. IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat. Immunol. 2003;4:491–496. doi: 10.1038/ni921. PubMed DOI

Chau T.L., Gioia R., Gatot J.S., Patrascu F., Carpentier I., Chapelle J.P., O’Neill L., Beyaert R., Piette J., Chariot A. Are the IKKs and IKK-related kinases TBK1 and IKK-epsilon similarly activated? Trends Biochem. Sci. 2008;33:171–180. doi: 10.1016/j.tibs.2008.01.002. PubMed DOI

Leich E., Weissbach S., Klein H.U., Grieb T., Pischimarov J., Stuhmer T., Chatterjee M., Steinbrunn T., Langer C., Eilers M., et al. Multiple myeloma is affected by multiple and heterogeneous somatic mutations in adhesion- and receptor tyrosine kinase signaling molecules. Blood Cancer J. 2013;3:e102. doi: 10.1038/bcj.2012.47. PubMed DOI PMC

Gilad N., Zukerman H., Pick M., Gatt M.E. The role of CD24 in multiple myeloma tumorigenicity and effects of the microenvironment on its expression. Oncotarget. 2019;10:5480–5491. doi: 10.18632/oncotarget.27190. PubMed DOI PMC

Ullah T.R. The role of CXCR4 in multiple myeloma: Cells’ journey from bone marrow to beyond. J. Bone Oncol. 2019;17:100253. doi: 10.1016/j.jbo.2019.100253. PubMed DOI PMC

Gross Even-Zohar N., Pick M., Hofstetter L., Shaulov A., Nachmias B., Lebel E., Gatt M.E. CD24 Is a Prognostic Marker for Multiple Myeloma Progression and Survival. J. Clin. Med. 2022;11:2913. doi: 10.3390/jcm11102913. PubMed DOI PMC

Gschwandtner M., Derler R., Midwood K.S. More Than Just Attractive: How CCL2 Influences Myeloid Cell Behavior Beyond Chemotaxis. Front. Immunol. 2019;10:2759. doi: 10.3389/fimmu.2019.02759. PubMed DOI PMC

Valkovic T., Babarovic E., Lucin K., Stifter S., Aralica M., Seili-Bekafigo I., Duletic-Nacinovic A., Jonjic N. Plasma Levels of Monocyte Chemotactic Protein-1 Are Associated with Clinical Features and Angiogenesis in Patients with Multiple Myeloma. Biomed. Res. Int. 2016;2016:7870590. doi: 10.1155/2016/7870590. PubMed DOI PMC

Broek I.V., Asosingh K., Vanderkerken K., Straetmans N., Van Camp B., Van Riet I. Chemokine receptor CCR2 is expressed by human multiple myeloma cells and mediates migration to bone marrow stromal cell-produced monocyte chemotactic proteins MCP-1, -2 and -3. Br. J. Cancer. 2003;88:855–862. doi: 10.1038/sj.bjc.6600833. PubMed DOI PMC

Sukhdeo K., Mani M., Zhang Y., Dutta J., Yasui H., Rooney M.D., Carrasco D.E., Zheng M., He H., Tai Y.T., et al. Targeting the beta-catenin/TCF transcriptional complex in the treatment of multiple myeloma. Proc. Natl. Acad. Sci. USA. 2007;104:7516–7521. doi: 10.1073/pnas.0610299104. PubMed DOI PMC

Gyory I., Fejer G., Ghosh N., Seto E., Wright K.L. Identification of a functionally impaired positive regulatory domain I binding factor 1 transcription repressor in myeloma cell lines. J. Immunol. 2003;170:3125–3133. doi: 10.4049/jimmunol.170.6.3125. PubMed DOI

Fan F., Podar K. The Role of AP-1 Transcription Factors in Plasma Cell Biology and Multiple Myeloma Pathophysiology. Cancers. 2021;13:2326. doi: 10.3390/cancers13102326. PubMed DOI PMC

Jovanovic K.K., Roche-Lestienne C., Ghobrial I.M., Facon T., Quesnel B., Manier S. Targeting MYC in multiple myeloma. Leukemia. 2018;32:1295–1306. doi: 10.1038/s41375-018-0036-x. PubMed DOI

Jin Z., Zhou S., Ye H., Jiang S., Yu K., Ma Y. The mechanism of SP1/p300 complex promotes proliferation of multiple myeloma cells through regulating IQGAP1 transcription. Biomed. Pharmacother. 2019;119:109434. doi: 10.1016/j.biopha.2019.109434. PubMed DOI

Viziteu E., Grandmougin C., Goldschmidt H., Seckinger A., Hose D., Klein B., Moreaux J. Chetomin, targeting HIF-1alpha/p300 complex, exhibits antitumour activity in multiple myeloma. Br. J. Cancer. 2016;114:519–523. doi: 10.1038/bjc.2016.20. PubMed DOI PMC

Gong Y., Zack T.I., Morris L.G., Lin K., Hukkelhoven E., Raheja R., Tan I.L., Turcan S., Veeriah S., Meng S., et al. Pan-cancer genetic analysis identifies PARK2 as a master regulator of G1/S cyclins. Nat. Genet. 2014;46:588–594. doi: 10.1038/ng.2981. PubMed DOI PMC

Tanaka A. Parkin-mediated selective mitochondrial autophagy, mitophagy: Parkin purges damaged organelles from the vital mitochondrial network. FEBS Lett. 2010;584:1386–1392. doi: 10.1016/j.febslet.2010.02.060. PubMed DOI PMC

Kay D.M., Stevens C.F., Hamza T.H., Montimurro J.S., Zabetian C.P., Factor S.A., Samii A., Griffith A., Roberts J.W., Molho E.S., et al. A comprehensive analysis of deletions, multiplications, and copy number variations in PARK2. Neurology. 2010;75:1189–1194. doi: 10.1212/WNL.0b013e3181f4d832. PubMed DOI PMC

Broderick P., Chubb D., Johnson D.C., Weinhold N., Forsti A., Lloyd A., Olver B., Ma Y., Dobbins S.E., Walker B.A., et al. Common variation at 3p22.1 and 7p15.3 influences multiple myeloma risk. Nat. Genet. 2011;44:58–61. doi: 10.1038/ng.993. PubMed DOI PMC

Levy D., Ehret G.B., Rice K., Verwoert G.C., Launer L.J., Dehghan A., Glazer N.L., Morrison A.C., Johnson A.D., Aspelund T., et al. Genome-wide association study of blood pressure and hypertension. Nat. Genet. 2009;41:677–687. doi: 10.1038/ng.384. PubMed DOI PMC

Folkersen L., van’t Hooft F., Chernogubova E., Agardh H.E., Hansson G.K., Hedin U., Liska J., Syvanen A.C., Paulsson-Berne G., Franco-Cereceda A., et al. Association of genetic risk variants with expression of proximal genes identifies novel susceptibility genes for cardiovascular disease. Circ. Cardiovasc. Genet. 2010;3:365–373. doi: 10.1161/CIRCGENETICS.110.948935. PubMed DOI

Cross H.S., Lipkin M., Kallay E. Nutrients regulate the colonic vitamin D system in mice: Relevance for human colon malignancy. J. Nutr. 2006;136:561–564. doi: 10.1093/jn/136.3.561. PubMed DOI

Pendas-Franco N., Aguilera O., Pereira F., Gonzalez-Sancho J.M., Munoz A. Vitamin D and Wnt/beta-catenin pathway in colon cancer: Role and regulation of DICKKOPF genes. Anticancer Res. 2008;28:2613–2623. PubMed

Rohan J.N., Weigel N.L. 1Alpha,25-dihydroxyvitamin D3 reduces c-Myc expression, inhibiting proliferation and causing G1 accumulation in C4-2 prostate cancer cells. Endocrinology. 2009;150:2046–2054. doi: 10.1210/en.2008-1395. PubMed DOI PMC

Clay-Gilmour A.I., Hildebrandt M.A.T., Brown E.E., Hofmann J.N., Spinelli J.J., Giles G.G., Cozen W., Bhatti P., Wu X., Waller R.G., et al. Coinherited genetics of multiple myeloma and its precursor, monoclonal gammopathy of undetermined significance. Blood Adv. 2020;4:2789–2797. doi: 10.1182/bloodadvances.2020001435. PubMed DOI PMC

Yousefi S., Perozzo R., Schmid I., Ziemiecki A., Schaffner T., Scapozza L., Brunner T., Simon H.U. Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat. Cell Biol. 2006;8:1124–1132. doi: 10.1038/ncb1482. PubMed DOI

Heuck C.J., Mehta J., Bhagat T., Gundabolu K., Yu Y., Khan S., Chrysofakis G., Schinke C., Tariman J., Vickrey E., et al. Myeloma is characterized by stage-specific alterations in DNA methylation that occur early during myelomagenesis. J. Immunol. 2013;190:2966–2975. doi: 10.4049/jimmunol.1202493. PubMed DOI PMC

Dilworth D., Liu L., Stewart A.K., Berenson J.R., Lassam N., Hogg D. Germline CDKN2A mutation implicated in predisposition to multiple myeloma. Blood. 2000;95:1869–1871. doi: 10.1182/blood.V95.5.1869.005k09_1869_1871. PubMed DOI

Shah V., Boyd K.D., Houlston R.S., Kaiser M.F. Constitutional mutation in CDKN2A is associated with long term survivorship in multiple myeloma: A case report. BMC Cancer. 2017;17:718. doi: 10.1186/s12885-017-3715-5. PubMed DOI PMC

Kay N.E., Leong T., Bone N., Kyle R.A., Greipp P.R., Van Ness B., Oken M.M. T-helper phenotypes in the blood of myeloma patients on ECOG phase III trials E9486/E3A93. Br. J. Haematol. 1998;100:459–463. doi: 10.1046/j.1365-2141.1998.00609.x. PubMed DOI

Zeller T., Wild P., Szymczak S., Rotival M., Schillert A., Castagne R., Maouche S., Germain M., Lackner K., Rossmann H., et al. Genetics and beyond--the transcriptome of human monocytes and disease susceptibility. PLoS ONE. 2010;5:e10693. doi: 10.1371/journal.pone.0010693. PubMed DOI PMC

Rios-Tamayo R., Lupianez C.B., Campa D., Hielscher T., Weinhold N., Martinez-Lopez J., Jerez A., Landi S., Jamroziak K., Dumontet C., et al. A common variant within the HNF1B gene is associated with overall survival of multiple myeloma patients: Results from the IMMEnSE consortium and meta-analysis. Oncotarget. 2016;7:59029–59048. doi: 10.18632/oncotarget.10665. PubMed DOI PMC

International Myeloma Working Group Criteria for the classification of monoclonal gammopathies, multiple myeloma and related disorders: A report of the International Myeloma Working Group. Br. J. Haematol. 2003;121:749–757. doi: 10.1046/j.1365-2141.2003.04355.x. PubMed DOI

Rajkumar S.V., Dimopoulos M.A., Palumbo A., Blade J., Merlini G., Mateos M.V., Kumar S., Hillengass J., Kastritis E., Richardson P., et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014;15:e538–e548. doi: 10.1016/S1470-2045(14)70442-5. PubMed DOI

Howie B.N., Donnelly P., Marchini J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 2009;5:e1000529. doi: 10.1371/journal.pgen.1000529. PubMed DOI PMC

Willer C.J., Li Y., Abecasis G.R. METAL: Fast and efficient meta-analysis of genomewide association scans. Bioinformatics. 2010;26:2190–2191. doi: 10.1093/bioinformatics/btq340. PubMed DOI PMC

Martino A., Sainz J., Buda G., Jamroziak K., Reis R.M., Garcia-Sanz R., Jurado M., Rios R., Szemraj-Rogucka Z., Marques H., et al. Genetics and molecular epidemiology of multiple myeloma: The rationale for the IMMEnSE consortium (review) Int. J. Oncol. 2012;40:625–638. doi: 10.3892/ijo.2011.1284. PubMed DOI

Manuel Sanchez-Maldonado J., Martinez-Bueno M., Canhao H., Ter Horst R., Munoz-Pena S., Moniz-Diez A., Rodriguez-Ramos A., Escudero A., Sorensen S.B., Hetland M.L., et al. NFKB2 polymorphisms associate with the risk of developing rheumatoid arthritis and response to TNF inhibitors: Results from the REPAIR consortium. Sci. Rep. 2020;10:4316. doi: 10.1038/s41598-020-61331-5. PubMed DOI PMC

Li Y., Oosting M., Smeekens S.P., Jaeger M., Aguirre-Gamboa R., Le K.T.T., Deelen P., Ricano-Ponce I., Schoffelen T., Jansen A.F.M., et al. A Functional Genomics Approach to Understand Variation in Cytokine Production in Humans. Cell. 2016;167:1099–1110.e14. doi: 10.1016/j.cell.2016.10.017. PubMed DOI

Aguirre-Gamboa R., Joosten I., Urbano P.C.M., van der Molen R.G., van Rijssen E., van Cranenbroek B., Oosting M., Smeekens S., Jaeger M., Zorro M., et al. Differential Effects of Environmental and Genetic Factors on T and B Cell Immune Traits. Cell Rep. 2016;17:2474–2487. doi: 10.1016/j.celrep.2016.10.053. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...