Combination of Chemotherapy and Mild Hyperthermia Using Targeted Nanoparticles: A Potential Treatment Modality for Breast Cancer

. 2023 Apr 30 ; 15 (5) : . [epub] 20230430

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37242631

Grantová podpora
GNT1112432 National Health and Medical Research Council

Odkazy

PubMed 37242631
PubMed Central PMC10222438
DOI 10.3390/pharmaceutics15051389
PII: pharmaceutics15051389
Knihovny.cz E-zdroje

Despite the clinical benefits that chemotherapeutics has had on the treatment of breast cancer, drug resistance remains one of the main obstacles to curative cancer therapy. Nanomedicines allow therapeutics to be more targeted and effective, resulting in enhanced treatment success, reduced side effects, and the possibility of minimising drug resistance by the co-delivery of therapeutic agents. Porous silicon nanoparticles (pSiNPs) have been established as efficient vectors for drug delivery. Their high surface area makes them an ideal carrier for the administration of multiple therapeutics, providing the means to apply multiple attacks to the tumour. Moreover, immobilising targeting ligands on the pSiNP surface helps direct them selectively to cancer cells, thereby reducing harm to normal tissues. Here, we engineered breast cancer-targeted pSiNPs co-loaded with an anticancer drug and gold nanoclusters (AuNCs). AuNCs have the capacity to induce hyperthermia when exposed to a radiofrequency field. Using monolayer and 3D cell cultures, we demonstrate that the cell-killing efficacy of combined hyperthermia and chemotherapy via targeted pSiNPs is 1.5-fold higher than applying monotherapy and 3.5-fold higher compared to using a nontargeted system with combined therapeutics. The results not only demonstrate targeted pSiNPs as a successful nanocarrier for combination therapy but also confirm it as a versatile platform with the potential to be used for personalised medicine.

Zobrazit více v PubMed

Maughan K.L., Lutterbie M.A., Ham P.S. Treatment of breast cancer. Am. Fam. Physician. 2010;81:1339–1346. PubMed

Wu Q., Yang Z., Nie Y., Shi Y., Fan D. Multi-drug resistance in cancer chemotherapeutics: Mechanisms and lab approaches. Cancer Lett. 2014;347:159–166. doi: 10.1016/j.canlet.2014.03.013. PubMed DOI

Pérez-Herrero E., Fernández-Medarde A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur. J. Pharm. Biopharm. 2015;93:52–79. doi: 10.1016/j.ejpb.2015.03.018. PubMed DOI

Peer D., Karp J.M., Hong S., Farokhzad O.C., Margalit R., Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2007;2:751–760. doi: 10.1038/nnano.2007.387. PubMed DOI

Liu D., Bimbo L.M., Mäkilä E., Villanova F., Kaasalainen M., Herranz-Blanco B., Caramella C.M., Lehto V.-P., Salonen J., Herzig K.-H., et al. Co-delivery of a hydrophobic small molecule and a hydrophilic peptide by porous silicon nanoparticles. J. Control. Release. 2013;170:268–278. doi: 10.1016/j.jconrel.2013.05.036. PubMed DOI

Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: The key role of tumor-selective macromolecular drug targeting. Adv. Enzym. Regul. 2001;41:189–207. doi: 10.1016/S0065-2571(00)00013-3. PubMed DOI

Farokhzad O.C., Langer R. Impact of nanotechnology on drug delivery. ACS Nano. 2009;3:16–20. doi: 10.1021/nn900002m. PubMed DOI

Zhang D.-X., Esser L., Vasani R.B., Thissen H., Voelcker N.H. Porous silicon nanomaterials: Recent advances in surface engineering for controlled drug-delivery applications. Nanomedicine. 2019;14:3213–3230. doi: 10.2217/nnm-2019-0167. PubMed DOI

Tieu T., Alba M., Elnathan R., Cifuentes-Rius A., Voelcker N.H. Advances in Porous Silicon–Based Nanomaterials for Diagnostic and Therapeutic Applications. Adv. Ther. 2019;2:1800095. doi: 10.1002/adtp.201800095. DOI

Acharya S., Dilnawaz F., Sahoo S.K. Targeted epidermal growth factor receptor nanoparticle bioconjugates for breast cancer therapy. Biomaterials. 2009;30:5737–5750. doi: 10.1016/j.biomaterials.2009.07.008. PubMed DOI

Shadidi M., Sioud M. Selective targeting of cancer cells using synthetic peptides. Drug Resist. Updat. 2003;6:363–371. doi: 10.1016/j.drup.2003.11.002. PubMed DOI

Low P.S., Kularatne S.A. Folate-targeted therapeutic and imaging agents for cancer. Curr. Opin. Chem. Biol. 2009;13:256–262. doi: 10.1016/j.cbpa.2009.03.022. PubMed DOI

Danhier F., Feron O., Préat V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release. 2010;148:135–146. doi: 10.1016/j.jconrel.2010.08.027. PubMed DOI

Vogel C.L., Cobleigh M.A., Tripathy D., Gutheil J.C., Harris L.N., Fehrenbacher L., Slamon D.J., Murphy M., Novotny W.F., Burchmore M., et al. First-line Herceptin monotherapy in metastatic breast cancer. Oncology. 2001;61((Suppl. S2)):37–42. doi: 10.1159/000055400. PubMed DOI

Landgraf M., Lahr C.A., Kaur I., Shafiee A., Sanchez-Herrero A., Janowicz P.W., Ravichandran A., Howard C.B., Cifuentes-Rius A., McGovern J.A., et al. Targeted camptothecin delivery via silicon nanoparticles reduces breast cancer metastasis. Biomaterials. 2020;240:119791. doi: 10.1016/j.biomaterials.2020.119791. PubMed DOI

Cancer multidrug resistance. Nat. Biotechnol. 2000;18:IT18–IT20. doi: 10.1038/80051. PubMed DOI

Wu H., Jin H., Wang C., Zhang Z., Ruan H., Sun L., Yang C., Li Y., Qin W., Wang C. Synergistic Cisplatin/Doxorubicin Combination Chemotherapy for Multidrug-Resistant Cancer via Polymeric Nanogels Targeting Delivery. ACS Appl. Mater. Interfaces. 2017;9:9426–9436. doi: 10.1021/acsami.6b16844. PubMed DOI

Yardley D.A. Drug resistance and the role of combination chemotherapy in improving patient outcomes. Int. J. Breast Cancer. 2013;2013:137414. doi: 10.1155/2013/137414. PubMed DOI PMC

Miles D., von Minckwitz G., Seidman A.D. Combination versus sequential single-agent therapy in metastatic breast cancer. Oncologist. 2002;7((Suppl. S6)):13–19. doi: 10.1634/theoncologist.2002-0013. PubMed DOI

Chakrabarti S., Michor F. Pharmacokinetics and Drug Interactions Determine Optimum Combination Strategies in Computational Models of Cancer Evolution. Cancer Res. 2017;77:3908–3921. doi: 10.1158/0008-5472.CAN-16-2871. PubMed DOI PMC

Hu C.M., Aryal S., Zhang L. Nanoparticle-assisted combination therapies for effective cancer treatment. Ther. Deliv. 2010;1:323–334. doi: 10.4155/tde.10.13. PubMed DOI

Hu C.M., Zhang L. Nanoparticle-based combination therapy toward overcoming drug resistance in cancer. Biochem Pharm. 2012;83:1104–1111. doi: 10.1016/j.bcp.2012.01.008. PubMed DOI

Klimanov M.Y., Syvak L.A., Orel V.E., Lavryk G.V., Tarasenko T.Y., Orel V.B., Rykhalskyi A.Y., Stegnii V.V., Nesterenko A.O. Efficacy of Combined Regional Inductive Moderate Hyperthermia and Chemotherapy in Patients With Multiple Liver Metastases From Breast Cancer. Technol. Cancer Res. Treat. 2018;17:1533033818806003. doi: 10.1177/1533033818806003. PubMed DOI PMC

Phung D.C., Nguyen H.T., Phuong Tran T.T., Jin S.G., Yong C.S., Truong D.H., Tran T.H., Kim J.O. Combined hyperthermia and chemotherapy as a synergistic anticancer treatment. J. Pharm. Investig. 2019;49:519–526. doi: 10.1007/s40005-019-00431-5. DOI

Roti Roti J.L. Cellular responses to hyperthermia (40–46 °C): Cell killing and molecular events. Int. J. Hyperth. 2008;24:3–15. doi: 10.1080/02656730701769841. PubMed DOI

Januszewski A., Stebbing J. Hyperthermia in cancer: Is it coming of age? Lancet Oncol. 2014;15:565–566. doi: 10.1016/S1470-2045(14)70207-4. PubMed DOI

Dewey W.C., Hopwood L.E., Sapareto S.A., Gerweck L.E. Cellular responses to combinations of hyperthermia and radiation. Radiology. 1977;123:463–474. doi: 10.1148/123.2.463. PubMed DOI

Pellosi D.S., Macaroff P.P., Morais P.C., Tedesco A.C. Magneto low-density nanoemulsion (MLDE): A potential vehicle for combined hyperthermia and photodynamic therapy to treat cancer selectively. Mater. Sci. Eng. C. 2018;92:103–111. doi: 10.1016/j.msec.2018.06.033. PubMed DOI

Bienia A., Wiecheć-Cudak O., Murzyn A.A., Krzykawska-Serda M. Photodynamic Therapy and Hyperthermia in Combination Treatment—Neglected Forces in the Fight against Cancer. Pharmaceutics. 2021;13:1147. doi: 10.3390/pharmaceutics13081147. PubMed DOI PMC

Liu P., Ye M., Wu Y., Wu L., Lan K., Wu Z. Hyperthermia combined with immune checkpoint inhibitor therapy: Synergistic sensitization and clinical outcomes. Cancer Med. 2023;12:3201–3221. doi: 10.1002/cam4.5085. PubMed DOI PMC

Huang L., Li Y., Du Y., Zhang Y., Wang X., Ding Y., Yang X., Meng F., Tu J., Luo L., et al. Mild photothermal therapy potentiates anti-PD-L1 treatment for immunologically cold tumors via an all-in-one and all-in-control strategy. Nat. Commun. 2019;10:4871. doi: 10.1038/s41467-019-12771-9. PubMed DOI PMC

Hurwitz M., Stauffer P. Hyperthermia, radiation and chemotherapy: The role of heat in multidisciplinary cancer care. Semin. Oncol. 2014;41:714–729. doi: 10.1053/j.seminoncol.2014.09.014. PubMed DOI

Hanson G.W., Monreal R.C., Apell S.P. Electromagnetic absorption mechanisms in metal nanospheres: Bulk and surface effects in radiofrequency-terahertz heating of nanoparticles. J. Appl. Phys. 2011;109:124306. doi: 10.1063/1.3600222. DOI

Nasseri B., Kocum I.C., Seymen C.M., Rabiee N. Penetration Depth in Nanoparticles Incorporated Radiofrequency Hyperthermia into the Tissue: Comprehensive Study with Histology and Pathology Observations. IET Nanobiotechnol. 2019;13:634–639. doi: 10.1049/iet-nbt.2019.0066. PubMed DOI PMC

Jin R. Atomically precise metal nanoclusters: Stable sizes and optical properties. Nanoscale. 2015;7:1549–1565. doi: 10.1039/C4NR05794E. PubMed DOI

Cifuentes-Rius A., Deepagan V.G., Xie J., Voelcker N.H. Bright Future of Gold Nanoclusters in Theranostics. ACS Appl. Mater. Interfaces. 2021;13:49581–49588. doi: 10.1021/acsami.1c14275. PubMed DOI

Zare I., Chevrier D.M., Cifuentes-Rius A., Moradi N., Xianyu Y., Ghosh S., Trapiella-Alfonso L., Tian Y., Shourangiz-Haghighi A., Mukherjee S., et al. Protein-protected metal nanoclusters as diagnostic and therapeutic platforms for biomedical applications. Mater. Today. 2021 doi: 10.1016/j.mattod.2020.10.027. DOI

Cifuentes-Rius A., Ivask A., Das S., Penya-Auladell N., Fabregas L., Fletcher N.L., Houston Z.H., Thurecht K.J., Voelcker N.H. Gold Nanocluster-Mediated Cellular Death under Electromagnetic Radiation. ACS Appl. Mater. Interfaces. 2017;9:41159–41167. doi: 10.1021/acsami.7b13100. PubMed DOI

Cifuentes-Rius A., Ivask A., Sporleder E., Kaur I., Assan Y., Rao S., Warther D., Prestidge C.A., Durand J.O., Voelcker N.H. Dual-Action Cancer Therapy with Targeted Porous Silicon Nanovectors. Small. 2017;13:1701201. doi: 10.1002/smll.201701201. PubMed DOI

Collins C.B., McCoy R.S., Ackerson B.J., Collins G.J., Ackerson C.J. Radiofrequency heating pathways for gold nanoparticles. Nanoscale. 2014;6:8459–8472. doi: 10.1039/C4NR00464G. PubMed DOI PMC

Deepagan V.G., Leiske M.N., Fletcher N.L., Rudd D., Tieu T., Kirkwood N., Thurecht K.J., Kempe K., Voelcker N.H., Cifuentes-Rius A. Engineering Fluorescent Gold Nanoclusters Using Xanthate-Functionalized Hydrophilic Polymers: Toward Enhanced Monodispersity and Stability. Nano Lett. 2021;21:476–484. doi: 10.1021/acs.nanolett.0c03930. PubMed DOI

Chen L.Y., Wang C.W., Yuan Z., Chang H.T. Fluorescent gold nanoclusters: Recent advances in sensing and imaging. Anal. Chem. 2015;87:216–229. doi: 10.1021/ac503636j. PubMed DOI

Huang K., Ma H., Liu J., Huo S., Kumar A., Wei T., Zhang X., Jin S., Gan Y., Wang P.C., et al. Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells, multicellular spheroids, and tumors in vivo. ACS Nano. 2012;6:4483–4493. doi: 10.1021/nn301282m. PubMed DOI PMC

Li H., Ménard M., Vardanyan A., Charnay C., Raehm L., Oliviero E., Seisenbaeva G.A., Pleixats R., Durand J.-O. Synthesis of triethoxysilylated cyclen derivatives, grafting on magnetic mesoporous silica nanoparticles and application to metal ion adsorption. RSC Adv. 2021;11:10777–10784. doi: 10.1039/D1RA01581H. PubMed DOI PMC

Lin C.-A.J., Yang T.-Y., Lee C.-H., Huang S.H., Sperling R.A., Zanella M., Li J.K., Shen J.-L., Wang H.-H., Yeh H.-I., et al. Synthesis, Characterization, and Bioconjugation of Fluorescent Gold Nanoclusters toward Biological Labeling Applications. ACS Nano. 2009;3:395–401. doi: 10.1021/nn800632j. PubMed DOI

McCoy R.S., Choi S., Collins G., Ackerson B.J., Ackerson C.J. Superatom Paramagnetism Enables Gold Nanocluster Heating in Applied Radiofrequency Fields. ACS Nano. 2013;7:2610–2616. doi: 10.1021/nn306015c. PubMed DOI

Fukumura H., Sato M., Kezuka K., Sato I., Feng X., Okumura S., Fujita T., Yokoyama U., Eguchi H., Ishikawa Y., et al. Effect of ascorbic acid on reactive oxygen species production in chemotherapy and hyperthermia in prostate cancer cells. J. Physiol. Sci. 2012;62:251–257. doi: 10.1007/s12576-012-0204-0. PubMed DOI PMC

Tieu T., Dhawan S., Haridas V., Butler L.M., Thissen H., Cifuentes-Rius A., Voelcker N.H. Maximizing RNA Loading for Gene Silencing Using Porous Silicon Nanoparticles. ACS Appl. Mater. Interfaces. 2019;11:22993–23005. doi: 10.1021/acsami.9b05577. PubMed DOI

Aragón F.H., Coaquira J.A.H., Villegas-Lelovsky L., da Silva S.W., Cesar D.F., Nagamine L.C.C.M., Cohen R., Menéndez-Proupin E., Morais P.C. Evolution of the doping regimes in the Al-doped SnO2 nanoparticles prepared by a polymer precursor method. J. Phys. Condens. Matter. 2015;27:095301. doi: 10.1088/0953-8984/27/9/095301. PubMed DOI

Alhmoud H., Brodoceanu D., Elnathan R., Kraus T., Voelcker N. A MACEing Silicon: Towards single-step etching of defined porous nanostructures for biomedicine. Prog. Mater. Sci. 2019;116:100636. doi: 10.1016/j.pmatsci.2019.100636. DOI

Liu T., Xiao Z. Dynamic Light Scattering of Rigid Rods—A Universal Relationship on the Apparent Diffusion Coefficient as Revealed by Numerical Studies and Its Use for Rod Length Determination. Macromol. Chem. Phys. 2012;213:1697–1705. doi: 10.1002/macp.201200154. DOI

Secret E., Smith K., Dubljevic V., Moore E., Macardle P., Delalat B., Rogers M.-L., Johns T.G., Durand J.-O., Cunin F., et al. Antibody-Functionalized Porous Silicon Nanoparticles for Vectorization of Hydrophobic Drugs. Adv. Healthc. Mater. 2013;2:718–727. doi: 10.1002/adhm.201200335. PubMed DOI

Coffinier Y., Olivier C., Perzyna A., Grandidier B., Wallart X., Durand J.O., Melnyk O., Stiévenard D. Semicarbazide-functionalized Si(111) surfaces for the site-specific immobilization of peptides. Langmuir. 2005;21:1489–1496. doi: 10.1021/la047781s. PubMed DOI

Salonen J., Laitinen L., Kaukonen A.M., Tuura J., Björkqvist M., Heikkilä T., Vähä-Heikkilä K., Hirvonen J., Lehto V.P. Mesoporous silicon microparticles for oral drug delivery: Loading and release of five model drugs. J. Control. Release. 2005;108:362–374. doi: 10.1016/j.jconrel.2005.08.017. PubMed DOI

Venditto V.J., Simanek E.E. Cancer therapies utilizing the camptothecins: A review of the in vivo literature. Mol. Pharm. 2010;7:307–349. doi: 10.1021/mp900243b. PubMed DOI PMC

Kwon I.K., Lee S.C., Han B., Park K. Analysis on the current status of targeted drug delivery to tumors. J. Control. Release. 2012;164:108–114. doi: 10.1016/j.jconrel.2012.07.010. PubMed DOI PMC

Kumar A., Attaluri A., Mallipudi R., Cornejo C., Bordelon D., Armour M., Morua K., Deweese T.L., Ivkov R. Method to reduce non-specific tissue heating of small animals in solenoid coils. Int. J. Hyperth. 2013;29:106–120. doi: 10.3109/02656736.2013.764023. PubMed DOI PMC

Pantano P., Harrison C.D., Poulose J., Urrabazo D., Norman T.Q., Braun E.I., Draper R.K., Overzet L.J. Factors affecting the 13.56-MHz radio-frequency-mediated heating of gold nanoparticles. Appl. Spectrosc. Rev. 2017;52:821–836. doi: 10.1080/05704928.2017.1314299. DOI

Pearce J.A., Cook J.R. Heating mechanisms in gold nanoparticles at radio frequencies. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2011;2011:5577–5580. doi: 10.1109/iembs.2011.6091349. PubMed DOI

Corr S.J., Raoof M., Mackeyev Y., Phounsavath S., Cheney M.A., Cisneros B.T., Shur M., Gozin M., McNally P.J., Wilson L.J., et al. Citrate-capped gold nanoparticle electrophoretic heat production in response to a time-varying radiofrequency electric-field. J. Phys. Chem. C. 2012;116:24380–24389. doi: 10.1021/jp309053z. PubMed DOI PMC

Beyk J., Tavakoli H. Selective radiofrequency ablation of tumor by magnetically targeting of multifunctional iron oxide–gold nanohybrid. J. Cancer Res. Clin. Oncol. 2019;145:2199–2209. doi: 10.1007/s00432-019-02969-1. PubMed DOI PMC

Haraz O.M., Almorqi S., Sebak A., Alshebeili S.A. Wideband, Multiband, and Smart Reconfigurable Antennas for Modern Wireless Communications. IGI Global; Hershey, PA, USA: 2016. High-Gain Broadband Antennas for 60-GHz Short-Range Wireless Communications.

Takabatake D., Fujita T., Shien T., Kawasaki K., Taira N., Yoshitomi S., Takahashi H., Ishibe Y., Ogasawara Y., Doihara H. Tumor inhibitory effect of gefitinib (ZD1839, Iressa) and taxane combination therapy in EGFR-overexpressing breast cancer cell lines (MCF7/ADR, MDA-MB-231) Int. J. Cancer. 2007;120:181–188. doi: 10.1002/ijc.22187. PubMed DOI

Nahta R., Esteva F.J. HER2 therapy: Molecular mechanisms of trastuzumab resistance. Breast Cancer Res. 2006;8:215. doi: 10.1186/bcr1612. PubMed DOI PMC

Wong S.F. Cetuximab: An epidermal growth factor receptor monoclonal antibody for the treatment of colorectal cancer. Clin. Ther. 2005;27:684–694. doi: 10.1016/j.clinthera.2005.06.003. PubMed DOI

Luo M., Lewik G., Ratcliffe J.C., Choi C.H.J., Mäkilä E., Tong W.Y., Voelcker N.H. Systematic Evaluation of Transferrin-Modified Porous Silicon Nanoparticles for Targeted Delivery of Doxorubicin to Glioblastoma. ACS Appl. Mater. Interfaces. 2019;11:33637–33649. doi: 10.1021/acsami.9b10787. PubMed DOI

Habash R.W., Bansal R., Krewski D., Alhafid H.T. Thermal therapy, part 2: Hyperthermia techniques. Crit. Rev. Biomed. Eng. 2006;34:491–542. doi: 10.1615/CritRevBiomedEng.v34.i6.30. PubMed DOI

Edmondson R., Broglie J.J., Adcock A.F., Yang L. Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev. Technol. 2014;12:207–218. doi: 10.1089/adt.2014.573. PubMed DOI PMC

Riffle S., Pandey R.N., Albert M., Hegde R.S. Linking hypoxia, DNA damage and proliferation in multicellular tumor spheroids. BMC Cancer. 2017;17:338. doi: 10.1186/s12885-017-3319-0. PubMed DOI PMC

Liou G.Y., Storz P. Reactive oxygen species in cancer. Free Radic. Res. 2010;44:479–496. doi: 10.3109/10715761003667554. PubMed DOI PMC

Kalyanaraman B., Darley-Usmar V., Davies K.J., Dennery P.A., Forman H.J., Grisham M.B., Mann G.E., Moore K., Roberts L.J., 2nd, Ischiropoulos H. Measuring reactive oxygen and nitrogen species with fluorescent probes: Challenges and limitations. Free Radic. Biol. Med. 2012;52:1–6. doi: 10.1016/j.freeradbiomed.2011.09.030. PubMed DOI PMC

Jayasooriya R.G.P., Dilshara M., Molagoda N., Park C., Park S., Lee S., Choi Y., Gi Young K. Camptothecin induces G2/M phase arrest through the ATM-Chk2-Cdc25C axis as a result of autophagy-induced cytoprotection: Implications of reactive oxygen species. Oncotarget. 2018;9:21744–21757. doi: 10.18632/oncotarget.24934. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...