Combination of Chemotherapy and Mild Hyperthermia Using Targeted Nanoparticles: A Potential Treatment Modality for Breast Cancer
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GNT1112432
National Health and Medical Research Council
PubMed
37242631
PubMed Central
PMC10222438
DOI
10.3390/pharmaceutics15051389
PII: pharmaceutics15051389
Knihovny.cz E-zdroje
- Klíčová slova
- breast cancer, combination therapy, drug delivery, hyperthermia, porous silicon nanoparticles,
- Publikační typ
- časopisecké články MeSH
Despite the clinical benefits that chemotherapeutics has had on the treatment of breast cancer, drug resistance remains one of the main obstacles to curative cancer therapy. Nanomedicines allow therapeutics to be more targeted and effective, resulting in enhanced treatment success, reduced side effects, and the possibility of minimising drug resistance by the co-delivery of therapeutic agents. Porous silicon nanoparticles (pSiNPs) have been established as efficient vectors for drug delivery. Their high surface area makes them an ideal carrier for the administration of multiple therapeutics, providing the means to apply multiple attacks to the tumour. Moreover, immobilising targeting ligands on the pSiNP surface helps direct them selectively to cancer cells, thereby reducing harm to normal tissues. Here, we engineered breast cancer-targeted pSiNPs co-loaded with an anticancer drug and gold nanoclusters (AuNCs). AuNCs have the capacity to induce hyperthermia when exposed to a radiofrequency field. Using monolayer and 3D cell cultures, we demonstrate that the cell-killing efficacy of combined hyperthermia and chemotherapy via targeted pSiNPs is 1.5-fold higher than applying monotherapy and 3.5-fold higher compared to using a nontargeted system with combined therapeutics. The results not only demonstrate targeted pSiNPs as a successful nanocarrier for combination therapy but also confirm it as a versatile platform with the potential to be used for personalised medicine.
Centre of Polymer Systems Tomas Bata University 5678 760 01 Zlin Czech Republic
Monash Centre for Electron Microscopy Clayton Campus Monash University Clayton VIC 3168 Australia
Zobrazit více v PubMed
Maughan K.L., Lutterbie M.A., Ham P.S. Treatment of breast cancer. Am. Fam. Physician. 2010;81:1339–1346. PubMed
Wu Q., Yang Z., Nie Y., Shi Y., Fan D. Multi-drug resistance in cancer chemotherapeutics: Mechanisms and lab approaches. Cancer Lett. 2014;347:159–166. doi: 10.1016/j.canlet.2014.03.013. PubMed DOI
Pérez-Herrero E., Fernández-Medarde A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur. J. Pharm. Biopharm. 2015;93:52–79. doi: 10.1016/j.ejpb.2015.03.018. PubMed DOI
Peer D., Karp J.M., Hong S., Farokhzad O.C., Margalit R., Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2007;2:751–760. doi: 10.1038/nnano.2007.387. PubMed DOI
Liu D., Bimbo L.M., Mäkilä E., Villanova F., Kaasalainen M., Herranz-Blanco B., Caramella C.M., Lehto V.-P., Salonen J., Herzig K.-H., et al. Co-delivery of a hydrophobic small molecule and a hydrophilic peptide by porous silicon nanoparticles. J. Control. Release. 2013;170:268–278. doi: 10.1016/j.jconrel.2013.05.036. PubMed DOI
Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: The key role of tumor-selective macromolecular drug targeting. Adv. Enzym. Regul. 2001;41:189–207. doi: 10.1016/S0065-2571(00)00013-3. PubMed DOI
Farokhzad O.C., Langer R. Impact of nanotechnology on drug delivery. ACS Nano. 2009;3:16–20. doi: 10.1021/nn900002m. PubMed DOI
Zhang D.-X., Esser L., Vasani R.B., Thissen H., Voelcker N.H. Porous silicon nanomaterials: Recent advances in surface engineering for controlled drug-delivery applications. Nanomedicine. 2019;14:3213–3230. doi: 10.2217/nnm-2019-0167. PubMed DOI
Tieu T., Alba M., Elnathan R., Cifuentes-Rius A., Voelcker N.H. Advances in Porous Silicon–Based Nanomaterials for Diagnostic and Therapeutic Applications. Adv. Ther. 2019;2:1800095. doi: 10.1002/adtp.201800095. DOI
Acharya S., Dilnawaz F., Sahoo S.K. Targeted epidermal growth factor receptor nanoparticle bioconjugates for breast cancer therapy. Biomaterials. 2009;30:5737–5750. doi: 10.1016/j.biomaterials.2009.07.008. PubMed DOI
Shadidi M., Sioud M. Selective targeting of cancer cells using synthetic peptides. Drug Resist. Updat. 2003;6:363–371. doi: 10.1016/j.drup.2003.11.002. PubMed DOI
Low P.S., Kularatne S.A. Folate-targeted therapeutic and imaging agents for cancer. Curr. Opin. Chem. Biol. 2009;13:256–262. doi: 10.1016/j.cbpa.2009.03.022. PubMed DOI
Danhier F., Feron O., Préat V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release. 2010;148:135–146. doi: 10.1016/j.jconrel.2010.08.027. PubMed DOI
Vogel C.L., Cobleigh M.A., Tripathy D., Gutheil J.C., Harris L.N., Fehrenbacher L., Slamon D.J., Murphy M., Novotny W.F., Burchmore M., et al. First-line Herceptin monotherapy in metastatic breast cancer. Oncology. 2001;61((Suppl. S2)):37–42. doi: 10.1159/000055400. PubMed DOI
Landgraf M., Lahr C.A., Kaur I., Shafiee A., Sanchez-Herrero A., Janowicz P.W., Ravichandran A., Howard C.B., Cifuentes-Rius A., McGovern J.A., et al. Targeted camptothecin delivery via silicon nanoparticles reduces breast cancer metastasis. Biomaterials. 2020;240:119791. doi: 10.1016/j.biomaterials.2020.119791. PubMed DOI
Cancer multidrug resistance. Nat. Biotechnol. 2000;18:IT18–IT20. doi: 10.1038/80051. PubMed DOI
Wu H., Jin H., Wang C., Zhang Z., Ruan H., Sun L., Yang C., Li Y., Qin W., Wang C. Synergistic Cisplatin/Doxorubicin Combination Chemotherapy for Multidrug-Resistant Cancer via Polymeric Nanogels Targeting Delivery. ACS Appl. Mater. Interfaces. 2017;9:9426–9436. doi: 10.1021/acsami.6b16844. PubMed DOI
Yardley D.A. Drug resistance and the role of combination chemotherapy in improving patient outcomes. Int. J. Breast Cancer. 2013;2013:137414. doi: 10.1155/2013/137414. PubMed DOI PMC
Miles D., von Minckwitz G., Seidman A.D. Combination versus sequential single-agent therapy in metastatic breast cancer. Oncologist. 2002;7((Suppl. S6)):13–19. doi: 10.1634/theoncologist.2002-0013. PubMed DOI
Chakrabarti S., Michor F. Pharmacokinetics and Drug Interactions Determine Optimum Combination Strategies in Computational Models of Cancer Evolution. Cancer Res. 2017;77:3908–3921. doi: 10.1158/0008-5472.CAN-16-2871. PubMed DOI PMC
Hu C.M., Aryal S., Zhang L. Nanoparticle-assisted combination therapies for effective cancer treatment. Ther. Deliv. 2010;1:323–334. doi: 10.4155/tde.10.13. PubMed DOI
Hu C.M., Zhang L. Nanoparticle-based combination therapy toward overcoming drug resistance in cancer. Biochem Pharm. 2012;83:1104–1111. doi: 10.1016/j.bcp.2012.01.008. PubMed DOI
Klimanov M.Y., Syvak L.A., Orel V.E., Lavryk G.V., Tarasenko T.Y., Orel V.B., Rykhalskyi A.Y., Stegnii V.V., Nesterenko A.O. Efficacy of Combined Regional Inductive Moderate Hyperthermia and Chemotherapy in Patients With Multiple Liver Metastases From Breast Cancer. Technol. Cancer Res. Treat. 2018;17:1533033818806003. doi: 10.1177/1533033818806003. PubMed DOI PMC
Phung D.C., Nguyen H.T., Phuong Tran T.T., Jin S.G., Yong C.S., Truong D.H., Tran T.H., Kim J.O. Combined hyperthermia and chemotherapy as a synergistic anticancer treatment. J. Pharm. Investig. 2019;49:519–526. doi: 10.1007/s40005-019-00431-5. DOI
Roti Roti J.L. Cellular responses to hyperthermia (40–46 °C): Cell killing and molecular events. Int. J. Hyperth. 2008;24:3–15. doi: 10.1080/02656730701769841. PubMed DOI
Januszewski A., Stebbing J. Hyperthermia in cancer: Is it coming of age? Lancet Oncol. 2014;15:565–566. doi: 10.1016/S1470-2045(14)70207-4. PubMed DOI
Dewey W.C., Hopwood L.E., Sapareto S.A., Gerweck L.E. Cellular responses to combinations of hyperthermia and radiation. Radiology. 1977;123:463–474. doi: 10.1148/123.2.463. PubMed DOI
Pellosi D.S., Macaroff P.P., Morais P.C., Tedesco A.C. Magneto low-density nanoemulsion (MLDE): A potential vehicle for combined hyperthermia and photodynamic therapy to treat cancer selectively. Mater. Sci. Eng. C. 2018;92:103–111. doi: 10.1016/j.msec.2018.06.033. PubMed DOI
Bienia A., Wiecheć-Cudak O., Murzyn A.A., Krzykawska-Serda M. Photodynamic Therapy and Hyperthermia in Combination Treatment—Neglected Forces in the Fight against Cancer. Pharmaceutics. 2021;13:1147. doi: 10.3390/pharmaceutics13081147. PubMed DOI PMC
Liu P., Ye M., Wu Y., Wu L., Lan K., Wu Z. Hyperthermia combined with immune checkpoint inhibitor therapy: Synergistic sensitization and clinical outcomes. Cancer Med. 2023;12:3201–3221. doi: 10.1002/cam4.5085. PubMed DOI PMC
Huang L., Li Y., Du Y., Zhang Y., Wang X., Ding Y., Yang X., Meng F., Tu J., Luo L., et al. Mild photothermal therapy potentiates anti-PD-L1 treatment for immunologically cold tumors via an all-in-one and all-in-control strategy. Nat. Commun. 2019;10:4871. doi: 10.1038/s41467-019-12771-9. PubMed DOI PMC
Hurwitz M., Stauffer P. Hyperthermia, radiation and chemotherapy: The role of heat in multidisciplinary cancer care. Semin. Oncol. 2014;41:714–729. doi: 10.1053/j.seminoncol.2014.09.014. PubMed DOI
Hanson G.W., Monreal R.C., Apell S.P. Electromagnetic absorption mechanisms in metal nanospheres: Bulk and surface effects in radiofrequency-terahertz heating of nanoparticles. J. Appl. Phys. 2011;109:124306. doi: 10.1063/1.3600222. DOI
Nasseri B., Kocum I.C., Seymen C.M., Rabiee N. Penetration Depth in Nanoparticles Incorporated Radiofrequency Hyperthermia into the Tissue: Comprehensive Study with Histology and Pathology Observations. IET Nanobiotechnol. 2019;13:634–639. doi: 10.1049/iet-nbt.2019.0066. PubMed DOI PMC
Jin R. Atomically precise metal nanoclusters: Stable sizes and optical properties. Nanoscale. 2015;7:1549–1565. doi: 10.1039/C4NR05794E. PubMed DOI
Cifuentes-Rius A., Deepagan V.G., Xie J., Voelcker N.H. Bright Future of Gold Nanoclusters in Theranostics. ACS Appl. Mater. Interfaces. 2021;13:49581–49588. doi: 10.1021/acsami.1c14275. PubMed DOI
Zare I., Chevrier D.M., Cifuentes-Rius A., Moradi N., Xianyu Y., Ghosh S., Trapiella-Alfonso L., Tian Y., Shourangiz-Haghighi A., Mukherjee S., et al. Protein-protected metal nanoclusters as diagnostic and therapeutic platforms for biomedical applications. Mater. Today. 2021 doi: 10.1016/j.mattod.2020.10.027. DOI
Cifuentes-Rius A., Ivask A., Das S., Penya-Auladell N., Fabregas L., Fletcher N.L., Houston Z.H., Thurecht K.J., Voelcker N.H. Gold Nanocluster-Mediated Cellular Death under Electromagnetic Radiation. ACS Appl. Mater. Interfaces. 2017;9:41159–41167. doi: 10.1021/acsami.7b13100. PubMed DOI
Cifuentes-Rius A., Ivask A., Sporleder E., Kaur I., Assan Y., Rao S., Warther D., Prestidge C.A., Durand J.O., Voelcker N.H. Dual-Action Cancer Therapy with Targeted Porous Silicon Nanovectors. Small. 2017;13:1701201. doi: 10.1002/smll.201701201. PubMed DOI
Collins C.B., McCoy R.S., Ackerson B.J., Collins G.J., Ackerson C.J. Radiofrequency heating pathways for gold nanoparticles. Nanoscale. 2014;6:8459–8472. doi: 10.1039/C4NR00464G. PubMed DOI PMC
Deepagan V.G., Leiske M.N., Fletcher N.L., Rudd D., Tieu T., Kirkwood N., Thurecht K.J., Kempe K., Voelcker N.H., Cifuentes-Rius A. Engineering Fluorescent Gold Nanoclusters Using Xanthate-Functionalized Hydrophilic Polymers: Toward Enhanced Monodispersity and Stability. Nano Lett. 2021;21:476–484. doi: 10.1021/acs.nanolett.0c03930. PubMed DOI
Chen L.Y., Wang C.W., Yuan Z., Chang H.T. Fluorescent gold nanoclusters: Recent advances in sensing and imaging. Anal. Chem. 2015;87:216–229. doi: 10.1021/ac503636j. PubMed DOI
Huang K., Ma H., Liu J., Huo S., Kumar A., Wei T., Zhang X., Jin S., Gan Y., Wang P.C., et al. Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells, multicellular spheroids, and tumors in vivo. ACS Nano. 2012;6:4483–4493. doi: 10.1021/nn301282m. PubMed DOI PMC
Li H., Ménard M., Vardanyan A., Charnay C., Raehm L., Oliviero E., Seisenbaeva G.A., Pleixats R., Durand J.-O. Synthesis of triethoxysilylated cyclen derivatives, grafting on magnetic mesoporous silica nanoparticles and application to metal ion adsorption. RSC Adv. 2021;11:10777–10784. doi: 10.1039/D1RA01581H. PubMed DOI PMC
Lin C.-A.J., Yang T.-Y., Lee C.-H., Huang S.H., Sperling R.A., Zanella M., Li J.K., Shen J.-L., Wang H.-H., Yeh H.-I., et al. Synthesis, Characterization, and Bioconjugation of Fluorescent Gold Nanoclusters toward Biological Labeling Applications. ACS Nano. 2009;3:395–401. doi: 10.1021/nn800632j. PubMed DOI
McCoy R.S., Choi S., Collins G., Ackerson B.J., Ackerson C.J. Superatom Paramagnetism Enables Gold Nanocluster Heating in Applied Radiofrequency Fields. ACS Nano. 2013;7:2610–2616. doi: 10.1021/nn306015c. PubMed DOI
Fukumura H., Sato M., Kezuka K., Sato I., Feng X., Okumura S., Fujita T., Yokoyama U., Eguchi H., Ishikawa Y., et al. Effect of ascorbic acid on reactive oxygen species production in chemotherapy and hyperthermia in prostate cancer cells. J. Physiol. Sci. 2012;62:251–257. doi: 10.1007/s12576-012-0204-0. PubMed DOI PMC
Tieu T., Dhawan S., Haridas V., Butler L.M., Thissen H., Cifuentes-Rius A., Voelcker N.H. Maximizing RNA Loading for Gene Silencing Using Porous Silicon Nanoparticles. ACS Appl. Mater. Interfaces. 2019;11:22993–23005. doi: 10.1021/acsami.9b05577. PubMed DOI
Aragón F.H., Coaquira J.A.H., Villegas-Lelovsky L., da Silva S.W., Cesar D.F., Nagamine L.C.C.M., Cohen R., Menéndez-Proupin E., Morais P.C. Evolution of the doping regimes in the Al-doped SnO2 nanoparticles prepared by a polymer precursor method. J. Phys. Condens. Matter. 2015;27:095301. doi: 10.1088/0953-8984/27/9/095301. PubMed DOI
Alhmoud H., Brodoceanu D., Elnathan R., Kraus T., Voelcker N. A MACEing Silicon: Towards single-step etching of defined porous nanostructures for biomedicine. Prog. Mater. Sci. 2019;116:100636. doi: 10.1016/j.pmatsci.2019.100636. DOI
Liu T., Xiao Z. Dynamic Light Scattering of Rigid Rods—A Universal Relationship on the Apparent Diffusion Coefficient as Revealed by Numerical Studies and Its Use for Rod Length Determination. Macromol. Chem. Phys. 2012;213:1697–1705. doi: 10.1002/macp.201200154. DOI
Secret E., Smith K., Dubljevic V., Moore E., Macardle P., Delalat B., Rogers M.-L., Johns T.G., Durand J.-O., Cunin F., et al. Antibody-Functionalized Porous Silicon Nanoparticles for Vectorization of Hydrophobic Drugs. Adv. Healthc. Mater. 2013;2:718–727. doi: 10.1002/adhm.201200335. PubMed DOI
Coffinier Y., Olivier C., Perzyna A., Grandidier B., Wallart X., Durand J.O., Melnyk O., Stiévenard D. Semicarbazide-functionalized Si(111) surfaces for the site-specific immobilization of peptides. Langmuir. 2005;21:1489–1496. doi: 10.1021/la047781s. PubMed DOI
Salonen J., Laitinen L., Kaukonen A.M., Tuura J., Björkqvist M., Heikkilä T., Vähä-Heikkilä K., Hirvonen J., Lehto V.P. Mesoporous silicon microparticles for oral drug delivery: Loading and release of five model drugs. J. Control. Release. 2005;108:362–374. doi: 10.1016/j.jconrel.2005.08.017. PubMed DOI
Venditto V.J., Simanek E.E. Cancer therapies utilizing the camptothecins: A review of the in vivo literature. Mol. Pharm. 2010;7:307–349. doi: 10.1021/mp900243b. PubMed DOI PMC
Kwon I.K., Lee S.C., Han B., Park K. Analysis on the current status of targeted drug delivery to tumors. J. Control. Release. 2012;164:108–114. doi: 10.1016/j.jconrel.2012.07.010. PubMed DOI PMC
Kumar A., Attaluri A., Mallipudi R., Cornejo C., Bordelon D., Armour M., Morua K., Deweese T.L., Ivkov R. Method to reduce non-specific tissue heating of small animals in solenoid coils. Int. J. Hyperth. 2013;29:106–120. doi: 10.3109/02656736.2013.764023. PubMed DOI PMC
Pantano P., Harrison C.D., Poulose J., Urrabazo D., Norman T.Q., Braun E.I., Draper R.K., Overzet L.J. Factors affecting the 13.56-MHz radio-frequency-mediated heating of gold nanoparticles. Appl. Spectrosc. Rev. 2017;52:821–836. doi: 10.1080/05704928.2017.1314299. DOI
Pearce J.A., Cook J.R. Heating mechanisms in gold nanoparticles at radio frequencies. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2011;2011:5577–5580. doi: 10.1109/iembs.2011.6091349. PubMed DOI
Corr S.J., Raoof M., Mackeyev Y., Phounsavath S., Cheney M.A., Cisneros B.T., Shur M., Gozin M., McNally P.J., Wilson L.J., et al. Citrate-capped gold nanoparticle electrophoretic heat production in response to a time-varying radiofrequency electric-field. J. Phys. Chem. C. 2012;116:24380–24389. doi: 10.1021/jp309053z. PubMed DOI PMC
Beyk J., Tavakoli H. Selective radiofrequency ablation of tumor by magnetically targeting of multifunctional iron oxide–gold nanohybrid. J. Cancer Res. Clin. Oncol. 2019;145:2199–2209. doi: 10.1007/s00432-019-02969-1. PubMed DOI PMC
Haraz O.M., Almorqi S., Sebak A., Alshebeili S.A. Wideband, Multiband, and Smart Reconfigurable Antennas for Modern Wireless Communications. IGI Global; Hershey, PA, USA: 2016. High-Gain Broadband Antennas for 60-GHz Short-Range Wireless Communications.
Takabatake D., Fujita T., Shien T., Kawasaki K., Taira N., Yoshitomi S., Takahashi H., Ishibe Y., Ogasawara Y., Doihara H. Tumor inhibitory effect of gefitinib (ZD1839, Iressa) and taxane combination therapy in EGFR-overexpressing breast cancer cell lines (MCF7/ADR, MDA-MB-231) Int. J. Cancer. 2007;120:181–188. doi: 10.1002/ijc.22187. PubMed DOI
Nahta R., Esteva F.J. HER2 therapy: Molecular mechanisms of trastuzumab resistance. Breast Cancer Res. 2006;8:215. doi: 10.1186/bcr1612. PubMed DOI PMC
Wong S.F. Cetuximab: An epidermal growth factor receptor monoclonal antibody for the treatment of colorectal cancer. Clin. Ther. 2005;27:684–694. doi: 10.1016/j.clinthera.2005.06.003. PubMed DOI
Luo M., Lewik G., Ratcliffe J.C., Choi C.H.J., Mäkilä E., Tong W.Y., Voelcker N.H. Systematic Evaluation of Transferrin-Modified Porous Silicon Nanoparticles for Targeted Delivery of Doxorubicin to Glioblastoma. ACS Appl. Mater. Interfaces. 2019;11:33637–33649. doi: 10.1021/acsami.9b10787. PubMed DOI
Habash R.W., Bansal R., Krewski D., Alhafid H.T. Thermal therapy, part 2: Hyperthermia techniques. Crit. Rev. Biomed. Eng. 2006;34:491–542. doi: 10.1615/CritRevBiomedEng.v34.i6.30. PubMed DOI
Edmondson R., Broglie J.J., Adcock A.F., Yang L. Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev. Technol. 2014;12:207–218. doi: 10.1089/adt.2014.573. PubMed DOI PMC
Riffle S., Pandey R.N., Albert M., Hegde R.S. Linking hypoxia, DNA damage and proliferation in multicellular tumor spheroids. BMC Cancer. 2017;17:338. doi: 10.1186/s12885-017-3319-0. PubMed DOI PMC
Liou G.Y., Storz P. Reactive oxygen species in cancer. Free Radic. Res. 2010;44:479–496. doi: 10.3109/10715761003667554. PubMed DOI PMC
Kalyanaraman B., Darley-Usmar V., Davies K.J., Dennery P.A., Forman H.J., Grisham M.B., Mann G.E., Moore K., Roberts L.J., 2nd, Ischiropoulos H. Measuring reactive oxygen and nitrogen species with fluorescent probes: Challenges and limitations. Free Radic. Biol. Med. 2012;52:1–6. doi: 10.1016/j.freeradbiomed.2011.09.030. PubMed DOI PMC
Jayasooriya R.G.P., Dilshara M., Molagoda N., Park C., Park S., Lee S., Choi Y., Gi Young K. Camptothecin induces G2/M phase arrest through the ATM-Chk2-Cdc25C axis as a result of autophagy-induced cytoprotection: Implications of reactive oxygen species. Oncotarget. 2018;9:21744–21757. doi: 10.18632/oncotarget.24934. PubMed DOI PMC