An exome-wide study of renal operational tolerance
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
37265662
PubMed Central
PMC10230038
DOI
10.3389/fmed.2022.976248
Knihovny.cz E-resources
- Keywords
- Homer2, IQCH, LCN2, NGAL, exome sequencing, operational tolerance, primary cilium, renal transplantation,
- Publication type
- Journal Article MeSH
BACKGROUND: Renal operational tolerance is a rare and beneficial state of prolonged renal allograft function in the absence of immunosuppression. The underlying mechanisms are unknown. We hypothesized that tolerance might be driven by inherited protein coding genetic variants with large effect, at least in some patients. METHODS: We set up a European survey of over 218,000 renal transplant recipients and collected DNAs from 40 transplant recipients who maintained good allograft function without immunosuppression for at least 1 year. We performed an exome-wide association study comparing the distribution of moderate to high impact variants in 36 tolerant patients, selected for genetic homogeneity using principal component analysis, and 192 controls, using an optimal sequence-kernel association test adjusted for small samples. RESULTS: We identified rare variants of HOMER2 (3/36, FDR 0.0387), IQCH (5/36, FDR 0.0362), and LCN2 (3/36, FDR 0.102) in 10 tolerant patients vs. 0 controls. One patient carried a variant in both HOMER2 and LCN2. Furthermore, the three genes showed an identical variant in two patients each. The three genes are expressed at the primary cilium, a key structure in immune responses. CONCLUSION: Rare protein coding variants are associated with operational tolerance in a sizable portion of patients. Our findings have important implications for a better understanding of immune tolerance in transplantation and other fields of medicine.ClinicalTrials.gov, identifier: NCT05124444.
Brussels Interuniversity Genomics High Throughput Core VUB ULB Brussels Belgium
Center for Human Genetics Clinique Universitaires Saint Luc Brussels Belgium
Department of Biostatistics University of Washington Seattle WA United States
Department of Nephrology Hospital Centre EpiCURA Baudour Belgium
Department of Nephrology Hospital del Mar Institute Mar for Medical Research Barcelona Spain
Department of Nephrology Hospital Universitario 12 de Octubre Madrid Spain
Interuniversity Institute of Bioinformatics in Brussels Brussels Belgium
Istanbul Tip Fakültesi Istanbul School of Medicine Internal Medicine Nephrology Istanbul Türkiye
LabEx IGO Immunotherapy Graft Oncology Nantes France
Nephrology Center Santaros Klinikos Medical Faculty Vilnius University Vilnius Lithuania
Transplant Laboratory Institute for Clinical and Experimental Medicine Prague Czechia
See more in PubMed
Brouard S, Pallier A, Renaudin K, Foucher Y, Danger R, Devys A, et al. . The natural history of clinical operational tolerance after kidney transplantation through twenty-seven cases. Am J Transplant. (2012) 12:3296–307. 10.1111/j.1600-6143.2012.04249.x PubMed DOI
Massart A, Pallier A, Pascual J, Viklicky O, Budde K, Spasovski G, et al. . The DESCARTES-Nantes survey of kidney transplant recipients displaying clinical operational tolerance identifies 35 new tolerant patients and 34 almost tolerant patients. Nephrol Dial Transplant. (2016) 31:1002–13. 10.1093/ndt/gfv437 PubMed DOI
Massart A, Ghisdal L, Abramowicz M, Abramowicz D. Operational tolerance in kidney transplantation and associated biomarkers. Clin Exp Immunol. (2017) 189:138–57. 10.1111/cei.12981 PubMed DOI PMC
Starzl TE, Murase N, Demetris AJ, Trucco M, Abu-Elmagd K, Gray EA, et al. . Lessons of organ-induced tolerance learned from historical clinical experience. Transplantation. (2004) 77:926–9. 10.1097/01.TP.0000117780.74133.74 PubMed DOI PMC
Scandling JD, Busque S, Shizuru JA, Lowsky R, Hoppe R, Dejbakhsh-Jones S, et al. . Chimerism, graft survival, and withdrawal of immunosuppressive drugs in HLA matched and mismatched patients after living donor kidney and hematopoietic cell transplantation. Am J Transplant. (2015) 15:695–704. 10.1111/ajt.13091 PubMed DOI
Takemoto SK, Pinsky BW, Schnitzler MA, Lentine KL, Willoughby LM, Burroughs TE, et al. . A retrospective analysis of immunosuppression compliance, dose reduction and discontinuation in kidney transplant recipients. Am J Transplant. (2007) 7:2704–11. 10.1111/j.1600-6143.2007.01966.x PubMed DOI
Oura T, Cosimi AB, Kawai T. Chimerism-based tolerance in organ transplantation: preclinical and clinical studies. Clin Exp Immunol. (2017) 189:190–6. 10.1111/cei.12969 PubMed DOI PMC
Cohen JC, Kiss RS, Pertsemlidis A, Marcel YL, McPherson R, Hobbs HH. Multiple rare alleles contribute to low plasma levels of HDL cholesterol. Science. (2004) 305:869–72. 10.1126/science.1099870 PubMed DOI
Emond MJ, Louie T, Emerson J, Zhao W, Mathias RA, Knowles MR, et al. . Exome sequencing of extreme phenotypes identifies DCTN4 as a modifier of chronic Pseudomonas aeruginosa infection in cystic fibrosis. Nat Genet. (2012) 44:886–9. 10.1038/ng.2344 PubMed DOI PMC
Johansen CT, Wang J, Lanktree MB, Cao H, McIntyre AD, Ban MR, et al. . Excess of rare variants in genes identified by genome-wide association study of hypertriglyceridemia. Nat Genet. (2010) 42:684–7. 10.1038/ng.628 PubMed DOI PMC
Tsai CT, Hsieh CS, Chang SN, Chuang EY, Juang JM, Lin LY, et al. . Next-generation sequencing of nine atrial fibrillation candidate genes identified novel de novo mutations in patients with extreme trait of atrial fibrillation. J Med Genet. (2015) 52:28–36. 10.1136/jmedgenet-2014-102618 PubMed DOI
Do R, Stitziel NO, Won HH, Jorgensen AB, Duga S, Angelica Merlini P, et al. . Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for myocardial infarction. Nature. (2015) 518:102–6. 10.1038/nature13917 PubMed DOI PMC
McLaren CE, Emond MJ, Subramaniam VN, Phatak PD, Barton JC, Adams PC, et al. . Exome sequencing in HFE C282Y homozygous men with extreme phenotypes identifies a GNPAT variant associated with severe iron overload. Hepatology. (2015) 62:429–39. 10.1002/hep.27711 PubMed DOI PMC
Mackelprang RD, Bamshad MJ, Chong JX, Hou X, Buckingham KJ, Shively K, et al. . Whole genome sequencing of extreme phenotypes identifies variants in CD101 and UBE2V1 associated with increased risk of sexually acquired HIV-1. PLoS Pathog. (2017) 13:e1006703. 10.1371/journal.ppat.1006703 PubMed DOI PMC
Botstein D, Risch N. Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease. Nat Genet. (2003) 33(Suppl.):228–37. 10.1038/ng1090 PubMed DOI
Ng SB, Bigham AW, Buckingham KJ, Hannibal MC, McMillin MJ, Gildersleeve HI, et al. . Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat Genet. (2010) 42:790–3. 10.1038/ng.646 PubMed DOI PMC
Ng SB, Turner EH, Robertson PD, Flygare SD, Bigham AW, Lee C, et al. . Targeted capture and massively parallel sequencing of 12 human exomes. Nature. (2009) 461:272–6. 10.1038/nature08250 PubMed DOI PMC
Guo MH, Dauber A, Lippincott MF, Chan YM, Salem RM, Hirschhorn JN. Determinants of power in gene-based burden testing for monogenic disorders. Am J Hum Genet. (2016) 99:527–39. 10.1016/j.ajhg.2016.06.031 PubMed DOI PMC
Emond MJ, Louie T, Emerson J, Chong JX, Mathias RA, Knowles MR, et al. . Exome sequencing of phenotypic extremes identifies CAV2 and TMC6 as interacting modifiers of chronic pseudomonas aeruginosa infection in cystic fibrosis. PLoS Genet. (2015) 11:e1005273. 10.1371/journal.pgen.1005273 PubMed DOI PMC
He Z, Liu L, Wang C, Le Guen Y, Lee J, Gogarten S, et al. . Identification of putative causal loci in whole-genome sequencing data via knockoff statistics. Nat Commun. (2021) 12:3152. 10.1038/s41467-021-22889-4 PubMed DOI PMC
Lee S, Emond MJ, Bamshad MJ, Barnes KC, Rieder MJ, Nickerson DA, et al. . Optimal unified approach for rare-variant association testing with application to small-sample case-control whole-exome sequencing studies. Am J Hum Genet. (2012) 91:224–37. 10.1016/j.ajhg.2012.06.007 PubMed DOI PMC
Cirulli ET, Goldstein DB. Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nat Rev Genet. (2010) 11:415–25. 10.1038/nrg2779 PubMed DOI
Martin E, Girardello R, Dittmar G, Ludwig A. New insights into the organization and regulation of the apical polarity network in mammalian epithelial cells. FEBS J. (2021) 288:7073–95. 10.1111/febs.15710 PubMed DOI
Worley PF, Zeng W, Huang G, Kim JY, Shin DM, Kim MS, et al. . Homer proteins in Ca2+ signaling by excitable and non-excitable cells. Cell Calcium. (2007) 42:363–71. 10.1016/j.ceca.2007.05.007 PubMed DOI PMC
Huang GN, Huso DL, Bouyain S, Tu J, McCorkell KA, May MJ, et al. . NFAT binding and regulation of T cell activation by the cytoplasmic scaffolding Homer proteins. Science. (2008) 319:476–81. 10.1126/science.1151227 PubMed DOI PMC
Nie DS, Liu Y, Juan H, Yang X. Overexpression of human SPATA17 protein induces germ cell apoptosis in transgenic male mice. Mol Biol Rep. (2013) 40:1905–10. 10.1007/s11033-012-2246-z PubMed DOI
Putkey JA, Kleerekoper Q, Gaertner TR, Waxham MN. A new role for IQ motif proteins in regulating calmodulin function. J Biol Chem. (2003) 278:49667–70. 10.1074/jbc.C300372200 PubMed DOI
Wei F, Karihaloo A, Yu Z, Marlier A, Seth P, Shibazaki S, et al. . Neutrophil gelatinase-associated lipocalin suppresses cyst growth by Pkd1 null cells in vitro and in vivo. Kidney Int. (2008) 74:1310–8. 10.1038/ki.2008.395 PubMed DOI PMC
Cassidy H, Slyne J, Higgins M, Radford R, Conlon PJ, Watson AJ, et al. . Neutrophil gelatinase-associated lipocalin (NGAL) is localised to the primary cilium in renal tubular epithelial cells - a novel source of urinary biomarkers of renal injury. Biochim Biophys Acta Mol Basis Dis. (2019) 1865:165532. 10.1016/j.bbadis.2019.165532 PubMed DOI
Flo TH, Smith KD, Sato S, Rodriguez DJ, Holmes MA, Strong RK, et al. . Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature. (2004) 432:917–21. 10.1038/nature03104 PubMed DOI
Schreiber A, Rousselle A, Klocke J, Bachmann S, Popovic S, Bontscho J, et al. . Neutrophil gelatinase-associated lipocalin protects from ANCA-induced GN by inhibiting TH17 immunity. J Am Soc Nephrol. (2020) 31:1569–84. 10.1681/ASN.2019090879 PubMed DOI PMC
Chen W, Li W, Zhang Z, Tang X, Wu S, Yao G, et al. . Lipocalin-2 exacerbates lupus nephritis by promoting Th1 cell differentiation. J Am Soc Nephrol. (2020) 31:2263–77. 10.1681/ASN.2019090937 PubMed DOI PMC
Vlkova M, Chovancova Z, Nechvatalova J, Connelly AN, Davis MD, Slanina P, et al. . Neutrophil and granulocytic myeloid-derived suppressor cell-mediated T cell suppression significantly contributes to immune dysregulation in common variable immunodeficiency disorders. J Immunol. (2019) 202:93–104. 10.4049/jimmunol.1800102 PubMed DOI
Ashraf MI, Schwelberger HG, Brendel KA, Feurle J, Andrassy J, Kotsch K, et al. . Exogenous lipocalin 2 ameliorates acute rejection in a mouse model of renal transplantation. Am J Transplant. (2016) 16:808–20. 10.1111/ajt.13521 PubMed DOI PMC
Weng YC, Huang YT, Chiang IC, Tsai PJ, Su YW, Chou WH. Lipocalin-2 mediates the rejection of neural transplants. FASEB J. (2021) 35:e21317. 10.1096/fj.202001018R PubMed DOI
Le Borgne M, Shaw AS. Immunology. Do T cells have a cilium? Science. (2013) 342:1177–8. 10.1126/science.1248078 PubMed DOI
Finetti F, Baldari CT. Compartmentalization of signaling by vesicular trafficking: a shared building design for the immune synapse and the primary cilium. Immunol Rev. (2013) 251:97–112. 10.1111/imr.12018 PubMed DOI
Huppa JB, Gleimer M, Sumen C, Davis MM. Continuous T cell receptor signaling required for synapse maintenance and full effector potential. Nat Immunol. (2003) 4:749–55. 10.1038/ni951 PubMed DOI
Hartzell CA, Jankowska KI, Burkhardt JK, Lewis RS. Calcium influx through CRAC channels controls actin organization and dynamics at the immune synapse. Elife. (2016) 5:e14850. 10.7554/eLife.14850 PubMed DOI PMC
Groopman EE, Marasa M, Cameron-Christie S, Petrovski S, Aggarwal VS, Milo-Rasouly H, et al. . Diagnostic utility of exome sequencing for kidney disease. N Engl J Med. (2019) 380:142–51. 10.1056/NEJMoa1806891 PubMed DOI PMC
Danger R, Thervet E, Grisoni ML, Puig PL, Pallier A, Tregouet D, et al. . PARVG gene polymorphism and operational renal allograft tolerance. Transplant Proc. (2012) 44:2845–8. 10.1016/j.transproceed.2012.09.034 PubMed DOI
Ghisdal L, Baron C, Lebranchu Y, Viklicky O, Konarikova A, Naesens M, et al. . Genome-wide association study of acute renal graft rejection. Am J Transplant. (2017) 17:201–9. 10.1111/ajt.13912 PubMed DOI PMC
Zhao H, Zhu L, Zhu Y, Cao J, Li S, Huang Q, et al. . The Cep63 paralogue Deup1 enables massive de novo centriole biogenesis for vertebrate multiciliogenesis. Nat Cell Biol. (2013) 15:1434–44. 10.1038/ncb2880 PubMed DOI
Tsyklauri O, Niederlova V, Forsythe E, Prasai A, Drobek A, Kasparek P, et al. . Bardet-Biedl Syndrome ciliopathy is linked to altered hematopoiesis and dysregulated self-tolerance. EMBO Rep. (2021) 22:e50785. 10.15252/embr.202050785 PubMed DOI PMC
Sprenkeler EGG, Webbers SDS, Kuijpers TW. When actin is not actin' like it should: a new category of distinct primary immunodeficiency disorders. J Innate Immun. (2021) 13:3–25. 10.1159/000509717 PubMed DOI PMC
Sachs DH. Tolerance: of mice and men. J Clin Invest. (2003) 111:1819–21. 10.1172/JCI18926 PubMed DOI PMC
Miller ML, Chong AS, Alegre ML. Fifty shades of tolerance: beyond a binary tolerant/non-tolerant paradigm. Curr Transplant Rep. (2017) 4:262–9. 10.1007/s40472-017-0166-5 PubMed DOI PMC
Rodriguez RM, Hernandez-Fuentes MP, Corte-Iglesias V, Saiz ML, Lozano JJ, Cortazar AR, et al. . Defining a methylation signature associated with operational tolerance in kidney transplant recipients. Front Immunol. (2021) 12:709164. 10.3389/fimmu.2021.709164 PubMed DOI PMC
Rodriguez DS, Jankowska-Gan E, Haynes LD, Leverson G, Munoz A, Heisey D, et al. . Immune regulation and graft survival in kidney transplant recipients are both enhanced by human leukocyte antigen matching. Am J Transplant. (2004) 4:537–43. 10.1111/j.1600-6143.2004.00385.x PubMed DOI
Hodges E, Xuan Z, Balija V, Kramer M, Molla MN, Smith SW, et al. . Genome-wide in situ exon capture for selective resequencing. Nat Genet. (2007) 39:1522–7. 10.1038/ng.2007.42 PubMed DOI
ClinicalTrials.gov
NCT05124444