Single-trial extraction of event-related potentials (ERPs) and classification of visual stimuli by ensemble use of discrete wavelet transform with Huffman coding and machine learning techniques
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37269019
PubMed Central
PMC10236727
DOI
10.1186/s12984-023-01179-8
PII: 10.1186/s12984-023-01179-8
Knihovny.cz E-zdroje
- Klíčová slova
- Discrete wavelet transform, Huffman coding, Machine learning classifiers, Single trials analysis (ERPs), Visual object detection,
- MeSH
- algoritmy MeSH
- elektroencefalografie * metody MeSH
- evokované potenciály fyziologie MeSH
- lidé MeSH
- plocha pod křivkou MeSH
- počítačové zpracování signálu MeSH
- strojové učení MeSH
- vlnková analýza * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Presentation of visual stimuli can induce changes in EEG signals that are typically detectable by averaging together data from multiple trials for individual participant analysis as well as for groups or conditions analysis of multiple participants. This study proposes a new method based on the discrete wavelet transform with Huffman coding and machine learning for single-trial analysis of evenal (ERPs) and classification of different visual events in the visual object detection task. METHODS: EEG single trials are decomposed with discrete wavelet transform (DWT) up to the [Formula: see text] level of decomposition using a biorthogonal B-spline wavelet. The coefficients of DWT in each trial are thresholded to discard sparse wavelet coefficients, while the quality of the signal is well maintained. The remaining optimum coefficients in each trial are encoded into bitstreams using Huffman coding, and the codewords are represented as a feature of the ERP signal. The performance of this method is tested with real visual ERPs of sixty-eight subjects. RESULTS: The proposed method significantly discards the spontaneous EEG activity, extracts the single-trial visual ERPs, represents the ERP waveform into a compact bitstream as a feature, and achieves promising results in classifying the visual objects with classification performance metrics: accuracies 93.60[Formula: see text], sensitivities 93.55[Formula: see text], specificities 94.85[Formula: see text], precisions 92.50[Formula: see text], and area under the curve (AUC) 0.93[Formula: see text] using SVM and k-NN machine learning classifiers. CONCLUSION: The proposed method suggests that the joint use of discrete wavelet transform (DWT) with Huffman coding has the potential to efficiently extract ERPs from background EEG for studying evoked responses in single-trial ERPs and classifying visual stimuli. The proposed approach has O(N) time complexity and could be implemented in real-time systems, such as the brain-computer interface (BCI), where fast detection of mental events is desired to smoothly operate a machine with minds.
Zobrazit více v PubMed
Wirth C, Dockree PM, Harty S, Lacey E, Arvaneh M. Towards error categorisation in BCI: single-trial EEG classification between different errors. J Neural Eng. 2019;17(1):016008. doi: 10.1088/1741-2552/ab53fe. PubMed DOI
Vanderperren K, Mijović B, Novitskiy N, Vanrumste B, Stiers P, Van den Bergh BR, Lagae L, Sunaert S, Wagemans J, Van Huffel S, et al. Single trial ERP reading based on parallel factor analysis. Psychophysiology. 2013;50(1):97–110. doi: 10.1111/j.1469-8986.2012.01405.x. PubMed DOI
Quiroga RQ, Atienza M, Cantero J, Jongsma M. What can we learn from single-trial event-related potentials? Chaos Complexity Lett. 2007;2(2):345–363.
Makeig S, Westerfield M, Jung T-P, Enghoff S, Townsend J, Courchesne E, Sejnowski TJ. Dynamic brain sources of visual evoked responses. Science. 2002;295(5555):690–694. doi: 10.1126/science.1066168. PubMed DOI
Guo J, Zhang Y, Chen L, Xu L, Mo X. Biocompatibility evaluation of electrospun PLCL/fibrinogen nanofibers in anterior cruciate ligament reconstruction. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2022;39(3):544–550. PubMed PMC
Blankertz B, Lemm S, Treder M, Haufe S, Müller K-R. Single-trial analysis and classification of ERP components–a tutorial. Neuroimage. 2011;56(2):814–825. doi: 10.1016/j.neuroimage.2010.06.048. PubMed DOI
Lemm S, Curio G, Hlushchuk Y, Muller K-R. Enhancing the signal-to-noise ratio of ICA-based extracted ERPS. IEEE Trans Biomed Eng. 2006;53(4):601–607. doi: 10.1109/TBME.2006.870258. PubMed DOI
Malik AS, Amin HU. Designing EEG experiments for studying the brain: design code and example datasets. Cambridge: Academic Press; 2017.
Amin HU, Malik AS, Kamel N, Chooi W-T, Hussain M. P300 correlates with learning & memory abilities and fluid intelligence. J Neuroeng Rehabil. 2015;12(1):1–14. doi: 10.1186/s12984-015-0077-6. PubMed DOI PMC
Kotowski K, Ochab J, Stapor K, Sommer W. The importance of ocular artifact removal in single-trial ERP analysis: the case of the n250 in face learning. Biomed Signal Process Control. 2023;79:104115. doi: 10.1016/j.bspc.2022.104115. DOI
Ferree TC, Luu P, Russell GS, Tucker DM. Scalp electrode impedance, infection risk, and EEG data quality. Clin Neurophysiol. 2001;112(3):536–544. doi: 10.1016/S1388-2457(00)00533-2. PubMed DOI
Qazi E-u-H, Hussain M, Aboalsamh H, Malik AS, Amin HU, Bamatraf S. Single trial EEG patterns for the prediction of individual differences in fluid intelligence. Front Hum Neurosci. 2017;10:687. doi: 10.3389/fnhum.2016.00687. PubMed DOI PMC
Zhang G, Li X, Lu Y, Tiihonen T, Chang Z, Cong F. Single-trial-based temporal principal component analysis on extracting event-related potentials of interest for an individual subject. J Neurosci Methods. 2023;385:109768. doi: 10.1016/j.jneumeth.2022.109768. PubMed DOI
Rostro-Gonzalez H, Cessac B, Viéville T. Parameter estimation in spiking neural networks: a reverse-engineering approach. J Neural Eng. 2012;9(2):026024. doi: 10.1088/1741-2560/9/2/026024. PubMed DOI
Qin Y, Zhan Y, Wang C, Zhang J, Yao L, Guo X, Wu X, Hu B. Classifying four-category visual objects using multiple ERP components in single-trial ERP. Cogn Neurodyn. 2016;10:275–285. doi: 10.1007/s11571-016-9378-0. PubMed DOI PMC
Zhang R, Zeng Y, Tong L, Shu J, Lu R, Yang K, Li Z, Yan B. Erp-wgan: a data augmentation method for EEG single-trial detection. J Neurosci Methods. 2022;376:109621. doi: 10.1016/j.jneumeth.2022.109621. PubMed DOI
Parashiva PK, Vinod AP. Single-trial detection of EEG error-related potentials using modified power-law transformation. Biomed Signal Process Control. 2021;67:102563. doi: 10.1016/j.bspc.2021.102563. DOI
Amin HU, Yusoff MZ, Ahmad RF. A novel approach based on wavelet analysis and arithmetic coding for automated detection and diagnosis of epileptic seizure in eeg signals using machine learning techniques. Biomed Signal Process Control. 2020;56:101707. doi: 10.1016/j.bspc.2019.101707. DOI
Amin HU, Malik AS, Kamel N, Hussain M. A novel approach based on data redundancy for feature extraction of EEG signals. Brain Topogr. 2016;29:207–217. doi: 10.1007/s10548-015-0462-2. PubMed DOI
Ahmadi M, Quiroga RQ. Automatic denoising of single-trial evoked potentials. Neuroimage. 2013;66:672–680. doi: 10.1016/j.neuroimage.2012.10.062. PubMed DOI
Nagel S, Dreher W, Rosenstiel W, Spüler M. The effect of monitor raster latency on VEPS, ERPS and brain-computer interface performance. J Neurosci Methods. 2018;295:45–50. doi: 10.1016/j.jneumeth.2017.11.018. PubMed DOI
Abibullaev B, Zollanvari A. Learning discriminative spatiospectral features of ERPS for accurate brain-computer interfaces. IEEE J Biomed Health Inform. 2019;23(5):2009–2020. doi: 10.1109/JBHI.2018.2883458. PubMed DOI
Changoluisa V, Varona P, Rodríguez FDB. A low-cost computational method for characterizing event-related potentials for BCI applications and beyond. IEEE Access. 2020;8:111089–111101. doi: 10.1109/ACCESS.2020.3000187. DOI
Ahmad RF, Malik AS, Kamel N, Reza F, Amin HU, Hussain M. Visual brain activity patterns classification with simultaneous EEG-FMRI: a multimodal approach. Technol Health Care. 2017;25(3):471–485. doi: 10.3233/THC-161286. PubMed DOI
Purwar S, Tripathi R, Barwad AW, Dinda A. Detection of mesangial hypercellularity of MEST-C score in immunoglobulin a-nephropathy using deep convolutional neural network. Multimed Tools Appl. 2020;79:27683–27703. doi: 10.1007/s11042-020-09304-8. DOI
Purwar S, Tripathi RK, Ranjan R, Saxena R. Detection of microcytic hypochromia using CBC and blood film features extracted from convolution neural network by different classifiers. Multimed Tools Appl. 2020;79:4573–4595. doi: 10.1007/s11042-019-07927-0. DOI
Purwar S, Tripathi R, Ranjan R, Saxena R. Classification of thalassemia patients using a fusion of deep image and clinical features. In: 2021 11th International Conference on Cloud Computing, Data Science & Engineering (Confluence), IEEE 2021; pp. 410–415.
Amin HU, Ousta F, Yusoff MZ, Malik AS. Modulation of cortical activity in response to learning and long-term memory retrieval of 2D verses stereoscopic 3S educational contents: evidence from an EEG study. Comput Hum Behav. 2021;114:106526. doi: 10.1016/j.chb.2020.106526. DOI
Polich J. Updating p300: an integrative theory of P3a and P3b. Clin Neurophysiol. 2007;118(10):2128–2148. doi: 10.1016/j.clinph.2007.04.019. PubMed DOI PMC
Huettel SA, McCarthy G. What is odd in the oddball task? Prefrontal cortex is activated by dynamic changes in response strategy. Neuropsychologia. 2004;42(3):379–386. doi: 10.1016/j.neuropsychologia.2003.07.009. PubMed DOI
Schneider W, Eschman A, Zuccolotto A. E-Prime: User’s Guide. Reference guide. Getting started guide. Psychology Software Tools, Incorporated, 2002.
Dimigen O. Optimizing the ICA-based removal of ocular EEG artifacts from free viewing experiments. Neuroimage. 2020;207:116117. doi: 10.1016/j.neuroimage.2019.116117. PubMed DOI
Grossmann A, Morlet J. Decomposition of hardy functions into square integrable wavelets of constant shape. SIAM J Math Anal. 1984;15(4):723–736. doi: 10.1137/0515056. DOI
Polikar R, Topalis A, Green D, Kounios J, Clark CM. Comparative multiresolution wavelet analysis of ERP spectral bands using an ensemble of classifiers approach for early diagnosis of alzheimer’s disease. Comput Biol Med. 2007;37(4):542–558. doi: 10.1016/j.compbiomed.2006.08.012. PubMed DOI PMC
Quiroga RQ, Garcia H. Single-trial event-related potentials with wavelet denoising. Clin Neurophysiol. 2003;114(2):376–390. doi: 10.1016/S1388-2457(02)00365-6. PubMed DOI
Subasi A. EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Syst Appl. 2007;32(4):1084–1093. doi: 10.1016/j.eswa.2006.02.005. DOI
Donoho DL, Johnstone IM. Ideal spatial adaptation by wavelet shrinkage. Biometrika. 1994;81(3):425–455. doi: 10.1093/biomet/81.3.425. DOI
Chen L-L, Zhang J, Zou J-Z, Zhao C-J, Wang G-S. A framework on wavelet-based nonlinear features and extreme learning machine for epileptic seizure detection. Biomed Signal Process Control. 2014;10:1–10. doi: 10.1016/j.bspc.2013.11.010. DOI
Pereira F, Mitchell T, Botvinick M. Machine learning classifiers and FMRI: a tutorial overview. Neuroimage. 2009;45(1):199–209. doi: 10.1016/j.neuroimage.2008.11.007. PubMed DOI PMC
Wong T-T. Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation. Pattern Recogn. 2015;48(9):2839–2846. doi: 10.1016/j.patcog.2015.03.009. DOI
Blázquez-García A, Conde A, Mori U, Lozano JA. A review on outlier/anomaly detection in time series data. ACM Comput Surv. 2021;54(3):1–33. doi: 10.1145/3444690. DOI
Shapiro SS, Wilk MB. An analysis of variance test for normality (complete samples) Biometrika. 1965;52(3/4):591–611. doi: 10.2307/2333709. DOI
Lee WL, Tan T, Falkmer T, Leung YH. Single-trial event-related potential extraction through one-unit ICA-with-reference. J Neural Eng. 2016;13(6):066010. doi: 10.1088/1741-2560/13/6/066010. PubMed DOI
Mancini F, Pepe A, Bernacchia A, Di Stefano G, Mouraux A, Iannetti GD. Characterizing the short-term habituation of event-related evoked potentials. ENeuro. 2018 doi: 10.1523/ENEURO.0014-18.2018. PubMed DOI PMC
Lindín M, Zurrón M, Díaz F. Stimulus intensity effects on P300 amplitude across repetitions of a standard auditory oddball task. Biol Psychol. 2005;69(3):375–385. doi: 10.1016/j.biopsycho.2004.08.001. PubMed DOI
Ouyang G, Sommer W, Zhou C. Reconstructing ERP amplitude effects after compensating for trial-to-trial latency jitter: a solution based on a novel application of residue iteration decomposition. Int J Psychophysiol. 2016;109:9–20. doi: 10.1016/j.ijpsycho.2016.09.015. PubMed DOI
Spencer KM. 10 averaging, detection and classification of single-trial ERPS. Event related potentials. A methods handbook, 2005; pp. 209–228.
Thornton ARD. Evaluation of a technique to measure latency jitter in event-related potentials. J Neurosci Methods. 2008;168(1):248–255. doi: 10.1016/j.jneumeth.2007.09.031. PubMed DOI
Ouyang G, Sommer W, Zhou C. Updating and validating a new framework for restoring and analyzing latency-variable ERP components from single trials with residue iteration decomposition (ride) Psychophysiology. 2015;52(6):839–856. doi: 10.1111/psyp.12411. PubMed DOI
Effern A, Lehnertz K, Fernandez G, Grunwald T, David P, Elger C. Single trial analysis of event related potentials: non-linear de-noising with wavelets. Clin Neurophysiol. 2000;111(12):2255–2263. doi: 10.1016/S1388-2457(00)00463-6. PubMed DOI
Quiroga RQ. Obtaining single stimulus evoked potentials with wavelet denoising. Physica D. 2000;145(3–4):278–292. doi: 10.1016/S0167-2789(00)00116-0. DOI
Kosciessa JQ, Grandy TH, Garrett DD, Werkle-Bergner M. Single-trial characterization of neural rhythms: potential and challenges. Neuroimage. 2020;206:116331. doi: 10.1016/j.neuroimage.2019.116331. PubMed DOI
Rajasekar P, Pushpalatha M. Huffman quantization approach for optimized EEG signal compression with transformation technique. Soft Comput. 2020;24:14545–14559. doi: 10.1007/s00500-020-04804-z. DOI