The Ancestral Shape of the Access Proton Path of Mitochondrial ATP Synthases Revealed by a Split Subunit-a
Language English Country United States Media print
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
37338543
PubMed Central
PMC10306403
DOI
10.1093/molbev/msad146
PII: 7203835
Knihovny.cz E-resources
- Keywords
- Trypanosoma brucei, gene fragmentation, mitochondrial ATP synthase, proton path, proton translocation, subunit-a,
- MeSH
- Adenosine Triphosphate metabolism MeSH
- Escherichia coli genetics metabolism MeSH
- Eukaryota metabolism MeSH
- Mitochondrial Proton-Translocating ATPases * genetics chemistry metabolism MeSH
- Proton-Translocating ATPases * metabolism MeSH
- Protons MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Adenosine Triphosphate MeSH
- Mitochondrial Proton-Translocating ATPases * MeSH
- Proton-Translocating ATPases * MeSH
- Protons MeSH
The passage of protons across membranes through F1Fo-ATP synthases spins their rotors and drives the synthesis of ATP. While the principle of torque generation by proton transfer is known, the mechanisms and routes of proton access and release and their evolution are not fully understood. Here, we show that the entry site and path of protons in the lumenal half channel of mitochondrial ATP synthases are largely defined by a short N-terminal α-helix of subunit-a. In Trypanosoma brucei and other Euglenozoa, the α-helix is part of another polypeptide chain that is a product of subunit-a gene fragmentation. This α-helix and other elements forming the proton pathway are widely conserved across eukaryotes and in Alphaproteobacteria, the closest extant relatives of mitochondria, but not in other bacteria. The α-helix blocks one of two proton routes found in Escherichia coli, resulting in a single proton entry site in mitochondrial and alphaproteobacterial ATP synthases. Thus, the shape of the access half channel predates eukaryotes and originated in the lineage from which mitochondria evolved by endosymbiosis.
Faculty of Science University of South Bohemia České Budějovice Czech Republic
Institute of Parasitology Biology Centre Czech Academy of Sciences České Budějovice Czech Republic
See more in PubMed
Burki F, Roger AJ, Brown MW, Simpson AGB. 2020. The new tree of eukaryotes. Trends Ecol Evol. 35:43–55. PubMed
Cain BD, Simoni RD. 1988. Interaction between Glu-219 and His-245 within the a subunit of F1Fo-ATPase in Escherichia coli. J Biol Chem. 263:6606–6612. PubMed
Cain BD, Simoni RD. 1989. Proton translocation by the F1FOATPase of Escherichia coli. J Biol Chem. 264:3292–3300. PubMed
Demmer JK, Phillips BP, Uhrig OL, Filloux A, Allsopp LP, Bublitz M, Meier T. 2022. Structure of ATP synthase from ESKAPE pathogen Acinetobacter baumannii. Sci Adv. 8:eabl5966. PubMed PMC
Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32:1792–1797. PubMed PMC
Eya S, Maeda M, Futai M. 1991. Role of the carboxyl terminal region of H+-ATPase FoF1 a subunit from Escherichia coli. Arch Biochem Biophys. 284:71–77. PubMed
Feniouk BA, Kozlova MA, Knorre DA, Cherepanov DA, Mulkidjanian AY, Junge W. 2004. The proton-driven rotor of ATP synthase: ohmic conductance (10 fS), and absence of voltage gating. Biophys J. 86:4094–4109. PubMed PMC
Flygaard RK, Muhleip A, Tobiasson V, Amunts A. 2020. Type III ATP synthase is a symmetry-deviated dimer that induces membrane curvature through tetramerization. Nat Commun. 11:5342. PubMed PMC
Fu CJ, Sheikh S, Miao W, Andersson SG, Baldauf SL. 2014. Missing genes, multiple ORFs, and C-to-U type RNA editing in Acrasis kona (Heterolobosea, Excavata) mitochondrial DNA. Genome Biol Evol. 6:2240–2257. PubMed PMC
Gahura O, Hierro-Yap C, Zikova A. 2021. Redesigned and reversed: architectural and functional oddities of the trypanosomal ATP synthase. Parasitology 148:1151–1160. PubMed PMC
Gahura O, Muhleip A, Hierro-Yap C, Panicucci B, Jain M, Hollaus D, Slapnickova M, Zikova A, Amunts A. 2022. An ancestral interaction module promotes oligomerization in divergent mitochondrial ATP synthases. Nat Commun. 13:5989. PubMed PMC
Gahura O, Subrtova K, Vachova H, Panicucci B, Fearnley IM, Harbour ME, Walker JE, Zikova A. 2018. The F1-ATPase from Trypanosoma brucei is elaborated by three copies of an additional p18-subunit. FEBS J. 285:614–628. PubMed
Goddard TD, Huang CC, Meng EC, Pettersen EF, Couch GS, Morris JH, Ferrin TE. 2018. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 27:14–25. PubMed PMC
Guo H, Bueler SA, Rubinstein JL. 2017. Atomic model for the dimeric Fo region of mitochondrial ATP synthase. Science 358:936–940. PubMed PMC
Guo H, Courbon GM, Bueler SA, Mai J, Liu J, Rubinstein JL. 2021. Structure of mycobacterial ATP synthase bound to the tuberculosis drug bedaquiline. Nature 589:143–147. PubMed
Guo H, Rubinstein JL. 2022. Structure of ATP synthase under strain during catalysis. Nat Commun. 13:2232. PubMed PMC
Hartzog PE, Cain BD. 1994. Second-site suppressor mutations at glycine 218 and histidine 245 in the alpha subunit of F1Fo ATP synthase in Escherichia coli. J Biol Chem. 269:32313–32317. PubMed
Hatch LP, Cox GB, Howitt SM. 1995. The essential arginine residue at position 210 in the alpha subunit of the Escherichia coli ATP synthase can be transferred to position 252 with partial retention of activity. J Biol Chem. 270:29407–29412. PubMed
Howitt SM, Lightowlers RN, Gibson F, Cox GB. 1990. Mutational analysis of the function of the a-subunit of the FoF1-ATPase of Escherichia coli. Biochim Biophys Acta. 1015:264–268. PubMed
Huet D, Rajendran E, van Dooren GG, Lourido S. 2018. Identification of cryptic subunits from an apicomplexan ATP synthase. Elife 7:e38097. PubMed PMC
Ivontsin L, Mashkovtseva E, Nartsissov Y. 2022. Insights on the proton translocation pathways in FoF1-ATP synthase using molecular dynamics simulations. Arch Biochem Biophys. 717:109135. PubMed
Jones DT, Taylor WR, Thornton JM. 1994. A model recognition approach to the prediction of all-helical membrane protein structure and topology. Biochemistry 33:3038–3049. PubMed
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Zidek A, Potapenko A, et al. . 2021. Highly accurate protein structure prediction with AlphaFold. Nature 596:583–589. PubMed PMC
Klusch N, Murphy BJ, Mills DJ, Yildiz O, Kuhlbrandt W. 2017. Structural basis of proton translocation and force generation in mitochondrial ATP synthase. Elife 6:e33274. PubMed PMC
Kuhlbrandt W. 2019. Structure and mechanisms of F-type ATP synthases. Annu Rev Biochem. 88:515–549. PubMed
Kyte J, Doolittle RF. 1982. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 157:105–132. PubMed
Lightowlers RN, Howitt SM, Hatch L, Gibson F, Cox G. 1988. The proton pore in the Escherichia coli FoF1-ATPase: substitution of glutamate by glutamine at position 219 of the alpha-subunit prevents Fo-mediated proton permeability. Biochim Biophys Acta. 933:241–248. PubMed
Montgomery MG, Gahura O, Leslie AGW, Zikova A, Walker JE. 2018. ATP Synthase from Trypanosoma brucei has an elaborated canonical F1-domain and conventional catalytic sites. Proc Natl Acad Sci U S A. 115:2102–2107. PubMed PMC
Montgomery MG, Petri J, Spikes TE, Walker JE. 2021. Structure of the ATP synthase from Mycobacterium smegmatis provides targets for treating tuberculosis. Proc Natl Acad Sci U S A. 118:e2111899118. PubMed PMC
Muhleip A, Flygaard RK, Baradaran R, Haapanen O, Gruhl T, Tobiasson V, Marechal A, Sharma V, Amunts A. 2023. Structural basis of mitochondrial membrane bending by the I-II-III2-IV2 supercomplex. Nature 615:934–938. PubMed PMC
Muhleip A, Kock Flygaard R, Ovciarikova J, Lacombe A, Fernandes P, Sheiner L, Amunts A. 2021. ATP synthase hexamer assemblies shape cristae of Toxoplasma mitochondria. Nat Commun. 12:120. PubMed PMC
Muhleip A, McComas SE, Amunts A. 2019. Structure of a mitochondrial ATP synthase with bound native cardiolipin. Elife 8:e51179. PubMed PMC
Munoz-Gomez SA, Susko E, Williamson K, Eme L, Slamovits CH, Moreira D, Lopez-Garcia P, Roger AJ. 2022. Site-and-branch-heterogeneous analyses of an expanded dataset favour mitochondria as sister to known Alphaproteobacteria. Nat Ecol Evol. 6:253–262. PubMed
Murphy BJ, Klusch N, Langer J, Mills DJ, Yildiz O, Kuhlbrandt W. 2019. Rotary substates of mitochondrial ATP synthase reveal the basis of flexible F1-Fo coupling. Science 364:eaaw9128. PubMed
Perez-Martinez X, Antaramian A, Vazquez-Acevedo M, Funes S, Tolkunova E, d’Alayer J, Claros MG, Davidson E, King MP, Gonzalez-Halphen D. 2001. Subunit II of cytochrome c oxidase in Chlamydomonad algae is a heterodimer encoded by two independent nuclear genes. J Biol Chem. 276:11302–11309. PubMed
Pinke G, Zhou L, Sazanov LA. 2020. Cryo-EM structure of the entire mammalian F-type ATP synthase. Nat Struct Mol Biol. 27:1077–1085. PubMed
Potter SC, Luciani A, Eddy SR, Park Y, Lopez R, Finn RD. 2018. HMMER Web server: 2018 update. Nucleic Acids Res. 46:W200–W204. PubMed PMC
Rodriguez-Salinas E, Riveros-Rosas H, Li Z, Fucikova K, Brand JJ, Lewis LA, Gonzalez-Halphen D. 2012. Lineage-specific fragmentation and nuclear relocation of the mitochondrial cox2 gene in chlorophycean green algae (Chlorophyta). Mol Phylogenet Evol. 64:166–176. PubMed
Sinha SD, Wideman JG. 2023. The persistent homology of mitochondrial ATP synthases. iScience 26:106700. PubMed PMC
Sobti M, Ishmukhametov R, Bouwer JC, Ayer A, Suarna C, Smith NJ, Christie M, Stocker R, Duncan TM, Stewart AG. 2019. Cryo-EM reveals distinct conformations of E. coli ATP synthase on exposure to ATP. Elife 8:e43864. PubMed PMC
Sobti M, Walshe JL, Wu D, Ishmukhametov R, Zeng YC, Robinson CV, Berry RM, Stewart AG. 2020. Cryo-EM structures provide insight into how E. coli F1Fo ATP synthase accommodates symmetry mismatch. Nat Commun. 11:2615. PubMed PMC
Spikes TE, Montgomery MG, Walker JE. 2020. Structure of the dimeric ATP synthase from bovine mitochondria. Proc Natl Acad Sci U S A. 117:23519–23526. PubMed PMC
Swart EC, Nowacki M, Shum J, Stiles H, Higgins BP, Doak TG, Schotanus K, Magrini VJ, Minx P, Mardis ER, et al. . 2012. The Oxytricha trifallax mitochondrial genome. Genome Biol Evol. 4:136–154. PubMed PMC
Szafranski P. 2017a. Evolutionarily recent, insertional fission of mitochondrial cox2 into complementary genes in bilaterian Metazoa. BMC Genomics 18:269. PubMed PMC
Szafranski P. 2017b. Intercompartmental piecewise gene transfer. Genes (Basel) 8:260. PubMed PMC
Tikhonenkov DV, Mikhailov KV, Gawryluk RMR, Belyaev AO, Mathur V, Karpov SA, Zagumyonnyi DG, Borodina AS, Prokina KI, Mylnikov AP, et al. . 2022. Microbial predators form a new supergroup of eukaryotes. Nature 612:714–719. PubMed
Tikhonenkov DV, Strassert JFH, Janouskovec J, Mylnikov AP, Aleoshin VV, Burki F, Keeling PJ. 2020. Predatory colponemids are the sister group to all other alveolates. Mol Phylogenet Evol. 149:106839. PubMed
Tobiasson V, Amunts A. 2020. Ciliate mitoribosome illuminates evolutionary steps of mitochondrial translation. Elife 9:e59264. PubMed PMC
Tobiasson V, Berzina I, Amunts A. 2022. Structure of a mitochondrial ribosome with fragmented rRNA in complex with membrane-targeting elements. Nat Commun. 13:6132. PubMed PMC
Tusnady GE, Simon I. 2001. The HMMTOP transmembrane topology prediction server. Bioinformatics 17:849–850. PubMed
Vik SB, Cain BD, Chun KT, Simoni RD. 1988. Mutagenesis of the alpha subunit of the F1Fo-ATPase from Escherichia coli. Mutations at Glu-196, Pro-190, and Ser-199. J Biol Chem. 263:6599–6605. PubMed
Walker JE. 2017. Structure, mechanism and regulation of ATP synthases. In: Wikstrom M, editor. Mechanisms of primary energy transduction in biology. Cambridge (UK): The Royal Society of Chemistry. p. 338.–; .
Waller RF, Keeling PJ. 2006. Alveolate and chlorophycean mitochondrial cox2 genes split twice independently. Gene 383:33–37. PubMed
Yanagisawa S, Frasch WD. 2021. pH-dependent 11 degrees F1Fo ATP synthase sub-steps reveal insight into the Fo torque generating mechanism. Elife 10:e70016. PubMed PMC
Zhou L, Maldonado M, Padavannil A, Guo F, Letts JA. 2022. Structures of Tetrahymena's respiratory chain reveal the diversity of eukaryotic core metabolism. Science 376:831–839. PubMed PMC