The first solid-state route to luminescent Au(I)-glutathionate and its pH-controlled transformation into ultrasmall oligomeric Au10-12(SG)10-12 nanoclusters for application in cancer radiotheraphy
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
37342159
PubMed Central
PMC10277803
DOI
10.3389/fchem.2023.1178225
PII: 1178225
Knihovny.cz E-resources
- Keywords
- bioactive molecules, glutathione, gold nanocluster, gold thiolate, mechanochemistry,
- Publication type
- Journal Article MeSH
There is still a need for synthetic approaches that are much faster, easier to scale up, more robust and efficient for generating gold(I)-thiolates that can be easily converted into gold-thiolate nanoclusters. Mechanochemical methods can offer significantly reduced reaction times, increased yields and straightforward recovery of the product, compared to the solution-based reactions. For the first time, a new simple, rapid and efficient mechanochemical redox method in a ball-mill was developed to produce the highly luminescent, pH-responsive Au(I)-glutathionate, [Au(SG)]n. The efficient productivity of the mechanochemical redox reaction afforded orange luminescent [Au(SG)]n in isolable amounts (mg scale), usually not achieved by more conventional methods in solution. Then, ultrasmall oligomeric Au10-12(SG)10-12 nanoclusters were prepared by pH-triggered dissociation of [Au(SG)]n. The pH-stimulated dissociation of the Au(I)-glutathionate complex provides a time-efficient synthesis of oligomeric Au10-12(SG)10-12 nanoclusters, it avoids high-temperature heating or the addition of harmful reducing agent (e.g., carbon monoxide). Therefore, we present herein a new and eco-friendly methodology to access oligomeric glutathione-based gold nanoclusters, already finding applications in biomedical field as efficient radiosensitizers in cancer radiotherapy.
Centre for Structure Study Research Centre for Natural Sciences Budapest Hungary
See more in PubMed
Ardila-Fierro K. J., Hernández J. G. (2021). Sustainability assessment of mechanochemistry by using the twelve principles of green chemistry. ChemSusChem 14, 2145–2162. 10.1002/cssc.202100478 PubMed DOI
Baier D. M., Rensch T., Dobreva D., Spula C., Fanenstich S., Rappen M., et al. (2022). The mechanochemical beckmann rearrangement over solid acids: From the ball mill to the extruder. Chemistry–Methods 3. 10.1002/cmtd.202200058 DOI
Baranyai P., Marsi G., Jobbágy C., Domján A., Oláh L., Deák A. (2015). Mechano-induced reversible colour and luminescence switching of a gold(I)-diphosphine complex. Dalton Trans. 44 (30), 13455–13459. 10.1039/c5dt01795e PubMed DOI
Bau R. (1998). Crystal structure of the antiarthritic drug gold thiomalate (myochrysine): A double-helical geometry in the solid state. J. Am. Chem. Soc. 120, 9380–9381. 10.1021/ja9819763 DOI
Bera A., Busupalli B., Prasad B. L. V. (2018). Solvent-less solid state synthesis of dispersible metal and semiconducting metal sulfide nanocrystals. ACS Sustainable Chem. Eng. 6 (9), 12006–12016. 10.1021/acssuschemeng.8b02292 DOI
Bertorelle F., Russier-Antoine I., Calin N., Comby-Zerbino C., Bensalah-Ledoux A., Guy S., et al. (2017). Au10(SG)10: A chiral gold catenane nanocluster with zero confined electrons. Optical properties and first-principles theoretical analysis. J. Phys. Chem. Lett. 8 (9), 1979–1985. 10.1021/acs.jpclett.7b00611 PubMed DOI
Bonasia P. J., Gindelberger D. E., Arnold J. (1993). Synthesis and characterization of gold(I) thiolates, selenolates, and tellurolates: X-Ray crystal structures of Au4TeC(SiMea)3]4, Au4[SC(SiMea)3]4, and Ph3PAu[TeC(SiMe3)3]. Inorg. Chem. 32 (23), 5126–5131. 10.1021/ic00075a031 DOI
Briñas R. P., Hu M., Qian L., Lymar E. S., Hainfeld J. F. (2008). Gold nanoparticle size controlled by polymeric Au(I) thiolate precursor size. J. Am. Chem. Soc. 130, 975–982. 10.1021/ja076333e PubMed DOI PMC
Carta M., Colacino E., Delogu F., Porcheddu A. (2020). Kinetics of mechanochemical transformations. Phys. Chem. Chem. Phys. 22, 14489–14502. 10.1039/d0cp01658f PubMed DOI
Chakraborty I., Pradeep T. (2017). Atomically precise clusters of noble metals: Emerging link between atoms and nanoparticles. Chem. Rev. 117 (12), 8208–8271. 10.1021/acs.chemrev.6b00769 PubMed DOI
Chui S. S., Chen R., Che C. M. (2006). A chiral [2]catenane precursor of the antiarthritic gold(I) drug auranofin. Angew. Chem. .Int. Ed. 45, 1621–1624. 10.1002/anie.200503431 PubMed DOI
Colacino E., Carta M., Pia G., Porcheddu A., Ricci P. C., Delogu F. (2018). Processing and investigation methods in mechanochemical kinetics. ACS Omega 3, 9196–9209. 10.1021/acsomega.8b01431 PubMed DOI PMC
Colacino E., Isoni V., Crawford D., Garcia F. (2021). Upscaling mechanochemistry: Challenges and opportunities for sustainable industry. Trends Chem. 3, 335–339. 10.1016/j.trechm.2021.02.008 DOI
Colacino E., Porcheddu A., Charnay C., Delogu F. (2019). From enabling technologies to medicinal mechanochemistry: An eco-friendly access to hydantoin-based active pharmaceutical ingredients. React. Chem. Eng. 4 (7), 1179–1188. 10.1039/c9re00069k DOI
Corbierre M. K., Lennox R. B. (2005). Preparation of thiol-capped gold nanoparticles by chemical reduction of soluble Au(I)−Thiolates. Chem. Mat. 17 (23), 5691–5696. 10.1021/cm051115a DOI
COST Action CA18112 (2019–2023). For more information on COST action CA18112 'mechanochemistry for sustainable industry' (MechSustInd). COST Association. Available at: http://www.mechsustind.eu/and http://www.cost.eu/ .
Crawford D. E., Porcheddu A., McCalmont A. S., Delogu F., James S. L., Colacino E. (2020). Solvent-free, continuous synthesis of hydrazone-based active pharmaceutical ingredients by twin-screw extrusion. ACS Sustainable Chem. Eng. 8 (32), 12230–12238. 10.1021/acssuschemeng.0c03816 DOI
Cuccu F., De Luca L., Delogu F., Colacino E., Solin N., Mocci R., et al. (2022). Mechanochemistry: New tools to navigate the uncharted territory of "impossible" reactions. ChemSusChem 15, e202200362. 10.1002/cssc.202200362 PubMed DOI PMC
Dai C., Yu Y., Xu S., Li M., Zhang S. X. (2019). Self-templated assembly of Au(I)/Ag(I) -thiolate sheets with central holes. Chem. Asian J. 14 (18), 3149–3153. 10.1002/asia.201900981 PubMed DOI
de Oliveira P. F. M., Michalchuk A. A. L., Buzanich A. G., Bienert R., Torresi R. M., Camargo P. H. C., et al. (2020a). Tandem X-ray absorption spectroscopy and scattering for in situ time-resolved monitoring of gold nanoparticle mechanosynthesis. Chem. Commun. 56 (71), 10329–10332. 10.1039/d0cc03862h PubMed DOI
de Oliveira P. F. M., Quiroz J., de Oliveira D. C., Camargo P. H. C. (2019). A mechano-colloidal approach for the controlled synthesis of metal nanoparticles. Chem. Commun. 55 (95), 14267–14270. 10.1039/c9cc06199a PubMed DOI
de Oliveira P. F. M., Torresi R. M., Emmerling F., Camargo P. H. C. (2020b). Challenges and opportunities in the bottom-up mechanochemical synthesis of noble metal nanoparticles. J. Mater. Chem. A 8 (32), 16114–16141. 10.1039/d0ta05183g DOI
Deák A., Jobbágy C., Demeter A., Čelko L., Cihlář J., Szabó P. T., et al. (2021). Mechanochemical synthesis of mononuclear gold(I) halide complexes of diphosphine ligands with tuneable luminescent properties. Dalton Trans. 50 (38), 13337–13344. 10.1039/d1dt01751a PubMed DOI
Deák A., Jobbágy C., Marsi G., Molnár M., Szakács Z., Baranyai P. (2015). Anion-Solvent-Temperature-and mechano-responsive photoluminescence in gold(I) diphosphine-based dimers. Chem. Eur. J. 21 (32), 11495–11508. 10.1002/chem.201501066 PubMed DOI
Deák A. (2019). “Stimuli-responsive nanosized supramolecular gold(I) complexes,” in Nanomaterials design for sensing applications. Editor Zenkina O. V. (Elsevier Inc.), 281–324.
Demeter A. (2014). First steps in photophysics. I. Fluorescence yield and radiative rate coefficient of 9,10-bis(phenylethynyl)anthracene in paraffins. J. Phys. Chem. A 118 (43), 9985–9993. 10.1021/jp507626h PubMed DOI
Do J. L., Tan D., Friščić T. (2018). Oxidative mechanochemistry: Direct, room-temperature, solvent-free conversion of palladium and gold metals into soluble salts and coordination complexes. Angew. Chem. Int. Ed. Engl. 57 (10), 2667–2671. 10.1002/anie.201712602 PubMed DOI
Du B., Jiang X., Das A., Zhou Q., Yu M., Jin R., et al. (2017). Glomerular barrier behaves as an atomically precise bandpass filter in a sub-nanometre regime. Nat. Nanotechnol. 12, 1096–1102. 10.1038/nnano.2017.170 PubMed DOI PMC
Fantozzi N., Volle J.-N., Porcheddu A., Virieux D., Garcia F., Colacino E. (2022). Green metrics in mechanochemistry. ChemRxiv (Cambridge: Cambridge Open Engage; ). Available at: https://chemrxiv.org/engage/chemrxiv/article-details/639f63d9a2da4b43d4088747 . PubMed
Friščić T., Mottillo C., Titi H. M. (2020). Mechanochemistry for synthesis. Angew. Chem. Int. Ed. 59, 1018–1029. 10.1002/anie.201906755 PubMed DOI
Galant O., Cerfeda G., McCalmont A. S., James S. L., Porcheddu A., Delogu F., et al. (2022). Mechanochemistry can reduce life cycle environmental impacts of manufacturing active pharmaceutical ingredients. ACS Sustainable Chem. Eng. 10, 1430–1439. 10.1021/acssuschemeng.1c06434 DOI
Hernández J. G., Halasz I., Crawford D. E., Krupicka M., Baláž M., André V., et al. (2020). European research in focus: Mechanochemistry for sustainable industry (COST action MechSustInd). Eur. J. Org. Chem. 2020 (1), 8–9. 10.1002/ejoc.201901718 DOI
Howard J. L., Cao Q., Browne D. L. (2018). Mechanochemistry as an emerging tool for molecular synthesis: What can it offer? Chem. Sci. 9, 3080–3094. 10.1039/c7sc05371a PubMed DOI PMC
Ingner F. J. L., Giustra Z. X., Novosedlik S., Orthaber A., Gates P. J., Dyrager C., et al. (2020). Mechanochemical synthesis of (hetero)aryl Au(i) complexes. Green Chem. 22 (17), 5648–5655. 10.1039/d0gc02263b DOI
James S. L., Adams C. J., Bolm C., Braga D., Collier P., Friščić T., et al. (2012). Mechanochemistry: Opportunities for new and cleaner synthesis. Chem. Soc. Rev. 41 (1), 413–447. 10.1039/c1cs15171a PubMed DOI
Jin M., Seki T., Ito H. (2017). Mechano-responsive luminescence via crystal-to-crystal phase transitions between chiral and non-chiral space groups. J. Am. Chem. Soc. 139, 7452–7455. 10.1021/jacs.7b04073 PubMed DOI
Jin R., Zhu Y., Qian H. (2011). Quantum-sized gold nanoclusters: Bridging the gap between organometallics and nanocrystals. Chem. Eur. J. 17 (24), 6584–6593. 10.1002/chem.201002390 PubMed DOI
Jobbágy C., Baranyai P., Marsi G., Rácz B., Li L., Naumov P., et al. (2016). Novel gold(I) diphosphine-based dimers with aurophilicity triggered multistimuli light-emitting properties. J. Mater. Chem. C 4 (43), 10253–10264. 10.1039/C6TC01427E DOI
Jobbágy C., Molnár M., Baranyai P., Deák A. (2014). Mechanochemical synthesis of crystalline and amorphous digold(I) helicates exhibiting anion- and phase-switchable luminescence properties. Dalton Trans. 43 (31), 11807–11810. 10.1039/C4DT01214C PubMed DOI
Jobbágy C., Tunyogi T., Pálinkas G., Deák A. (2011). A versatile solvent-free mechanochemical route to the synthesis of heterometallic dicyanoaurate-based coordination polymers. Inorg. Chem. 50 (15), 7301–7308. 10.1021/ic200893n PubMed DOI
Katoh R., Suzuki K., Furube A., Kotani M., Tokumaru K. (2009). Fluorescence quantum yield of aromatic hydrocarbon crystals. J. Phys. Chem. C 113 (7), 2961–2965. 10.1021/jp807684m DOI
Konnert L., Dimassi M., Gonnet L., Lamaty F., Martinez J., Colacino E. (2016). Poly(ethylene) glycols and mechanochemistry for the preparation of bioactive 3,5-disubstituted hydantoins. RSC Adv. 6, 36978–36986. 10.1039/c6ra03222b DOI
Lavenn C., Guillou N., Monge M., Podbevsek D., Ledoux G., Fateeva A., et al. (2016). Shedding light on an ultra-bright photoluminescent lamellar gold thiolate coordination polymer [Au(p-SPhCO2Me)]n. Chem. Commun. 52, 9063–9066. 10.1039/c5cc10448c PubMed DOI
Lavenn C., Okhrimenko L., Guillou N., Monge M., Ledoux G., Dujardin C., et al. (2015). A luminescent double helical gold(i)–thiophenolate coordination polymer obtained by hydrothermal synthesis or by thermal solid-state amorphous-to-crystalline isomerization. J. Mater. Chem. C 3, 4115–4125. 10.1039/c5tc00119f DOI
Luo Z., Yuan X., Yu Y., Zhang Q., Leong D. T., Lee J. Y., et al. (2012). From aggregation-induced emission of Au(I)-thiolate complexes to ultrabright Au(0)@Au(I)-thiolate core-shell nanoclusters. J. Am. Chem. Soc. 134, 16662–16670. 10.1021/ja306199p PubMed DOI
Martina K., Rotolo L., Porcheddu A., Delogu F., Bysouth S. R., Cravotto G., et al. (2018). High throughput mechanochemistry: Application to parallel synthesis of benzoxazines. Chem. Comm. 54, 551–554. 10.1039/c7cc07758k PubMed DOI
Mocci R., Colacino E., Luca L. D., Fattuoni C., Porcheddu A., Delogu F. (2021). The mechanochemical beckmann rearrangement: An eco-efficient “cut-and-paste” strategy to design the “good old amide bond”. ACS Sustainable Chem. Eng. 9, 2100–2114. 10.1021/acssuschemeng.0c07254 DOI
Mulas G., Delogu F., Enzo S., Schiffini L., Cocco G. (2010). A phenomenological approach to mechanically activated processes.
Negishi Y., Nobusada K., Tsukuda T. (2005). Glutathione-protected gold clusters revisited: Bridging the gap between gold(I)-thiolate complexes and thiolate-protected gold nanocrystals. J. Am. Chem. Soc. 127 (14), 5261–5270. 10.1021/ja042218h PubMed DOI
Negishi Y., Takasugi Y., Sato S., Yao H., Kimura K., Tsukuda T. (2004). Magic-numbered Aun clusters protected by glutathione monolayers (n = 18, 21, 25, 28, 32, 39): Isolation and spectroscopic characterization. J. Am. Chem. Soc. 126 (21), 6518–6519. 10.1021/ja0483589 PubMed DOI
Nie H., Li M., Hao Y., Wang X., Gao S., Wang P., et al. (2014). Morphology modulation and application of Au(I)–thiolate nanostructures. RSC Adv. 4 (92), 50521–50528. 10.1039/c4ra06500j DOI
Nie H., Li M. J., Hao Y. J., Wang X. D., Zhang S. X. A. (2013). Time-resolved monitoring of dynamic self-assembly of Au(I)-thiolate coordination polymers. Chem. Sci. 4 (4), 1852–1857. 10.1039/c3sc22215b DOI
Odriozola I., Loinaz I., Pomposo J. A., Grande H. J. (2007). Gold-glutathione supramolecular hydrogels. J. Mater. Chem. 17 (46), 4843–4845. 10.1039/b713542d DOI
Pérez-Venegas M., Juaristi E. (2020). Mechanochemical and mechanoenzymatic synthesis of pharmacologically active compounds: A green perspective. ACS Sustainable Chem. Eng. 8, 8881–8893. 10.1021/acssuschemeng.0c01645 DOI
Porcheddu A., Colacino E., De Luca L., Delogu F. (2020). Metal-Mediated and metal-catalyzed reactions under mechanochemical conditions. ACS Catal. 10, 8344–8394. 10.1021/acscatal.0c00142 DOI
Rak M. J., Friscic T., Moores A. (2014). Mechanochemical synthesis of Au, Pd, Ru and Re nanoparticles with lignin as a bio-based reducing agent and stabilizing matrix. Faraday Discuss. 170, 155–167. 10.1039/c4fd00053f PubMed DOI
Rao T. U., Nataraju B., Pradeep T. (2010). Ag9 quantum cluster through a solid-state route. J. Am. Chem. Soc. 132 (46), 16304–16307. 10.1021/ja105495n PubMed DOI
Schaaff T. G., Knight G., Shafigullin M. N., Borkman R. F., Whetten R. L. (1998). Isolation and selected properties of a 10.4 kDa gold: Glutathione cluster compound. J. Phys. Chem. B 102, 10643–10646. 10.1021/jp9830528 DOI
Schröter I., Strähle J. (2006). Thiolatokomplexe des einwertigen Golds. Synthese und Struktur von [(2,4,6-iPr3C6H2S)Au]6 und (NH4)[(2,4,6-iPr3C6H2S)2Au]. Chem. Ber. 124, 2161–2164. 10.1002/cber.19911241003 DOI
Seki T., Ozaki T., Okura T., Asakura K., Sakon A., Uekusa H., et al. (2015). Interconvertible multiple photoluminescence color of a gold(I) isocyanide complex in the solid state: Solvent-induced blue-shifted and mechano-responsive red-shifted photoluminescence. Chem. Sci. 6, 2187–2195. 10.1039/C4SC03960B PubMed DOI PMC
Seki T., Sakurada K., Muromoto M., Seki S., Ito H. (2016). Detailed investigation of the structural, thermal, and electronic properties of gold isocyanide complexes with mechano-triggered single-crystal-to-single-crystal phase transitions. Chem. Eur. J. 22, 1968–1978. 10.1002/chem.201503721 PubMed DOI
Sharma P., Vetter C., Ponnusamy E., Colacino E. (2022). Assessing the greenness of mechanochemical processes with the DOZN 2.0 tool. ACS Sustainable Chem. Eng. 10, 5110–5116. 10.1021/acssuschemeng.1c07981 DOI
Shaw C. F., III (1999). Gold-based therapeutic agents. Chem. Rev. 99 (9), 2589–2600. 10.1021/cr980431o PubMed DOI
Shichibu Y., Negishi Y., Tsunoyama H., Kanehara M., Teranishi T., Tsukuda T. (2007). Extremely high stability of glutathionate-protected Au25 clusters against core etching. Small 3 (5), 835–839. 10.1002/smll.200600611 PubMed DOI
Tan D., Garcia F. (2019). Main group mechanochemistry: From curiosity to established protocols. Chem. Soc. Rev. 48, 2274–2292. 10.1039/c7cs00813a PubMed DOI
Vaidya S., Veselska O., Zhadan A., Diaz-Lopez M., Joly Y., Bordet P., et al. (2020). Transparent and luminescent glasses of gold thiolate coordination polymers. Chem. Sci. 11, 6815–6823. 10.1039/d0sc02258f PubMed DOI PMC
Vainauskas J., Topic F., Arhangelskis M., Titi H. M., Friscic T. (2023). Polymorphs and solid solutions: Materials with new luminescent properties obtained through mechanochemical transformation of dicyanoaurate(I) salts. Faraday Discuss. 241, 425–447. 10.1039/d2fd00134a PubMed DOI
Veselska O., Guillou N., Ledoux G., Huang C. C., Dohnalova Newell K., Elkaim E., et al. (2019). A new lamellar gold thiolate coordination polymer, [Au(m-SPhCO(2)H)](n), for the formation of luminescent polymer composites. Nanomaterials 9, 1408. 10.3390/nano9101408 PubMed DOI PMC
Veselska O., Okhrimenko L., Guillou N., Podbevšek D., Ledoux G., Dujardin C., et al. (2017). An intrinsic dual-emitting gold thiolate coordination polymer, [Au(+I)(p-SPhCO2H)]n, for ratiometric temperature sensing. J. Mat. Chem. C 5, 9843–9848. 10.1039/c7tc03605a DOI
Virieux D., Delogu F., Porcheddu A., Garcia F., Colacino E. (2021). Mechanochemical rearrangements. J. Org. Chem. 86, 13885–13894. 10.1021/acs.joc.1c01323 PubMed DOI
Wiseman M. R., Marsh P. A., Bishop P. T., Brisdon B. J., Mahon M. F. (2000). Homoleptic gold thiolate catenanes. J. Am. Chem. Soc. 122, 12598–12599. 10.1021/ja0011156 DOI
Wu M. H., Zhao J., Chevrier D. M., Zhang P., Liu L. J. (2019). Luminescent Au(I)-Thiolate complexes through aggregation-induced emission: The effect of pH during and post synthesis. J. Phys. Chem. C 123 (10), 6010–6017. 10.1021/acs.jpcc.8b11716 DOI
Wu Z., Gayathri C., Gil R. R., Jin R. (2009a). Probing the structure and charge state of glutathione-capped Au25(SG)18 clusters by NMR and mass spectrometry. J. Am. Chem. Soc. 131, 6535–6542. 10.1021/ja900386s PubMed DOI
Wu Z., Suhan J., Jin R. (2009b). One-pot synthesis of atomically monodisperse, thiol-functionalized Au25 nanoclusters. J. Mater. Chem. 19 (5), 622–626. 10.1039/b815983a DOI
Wu Z., Yao Q., Chai O. J. H., Ding N., Xu W., Zang S., et al. (2020). Unraveling the impact of gold(I)-Thiolate motifs on the aggregation-induced emission of gold nanoclusters. Angew. Chem. 59 (25), 9934–9939. 10.1002/anie.201916675 PubMed DOI
Yagai S., Seki T., Aonuma H., Kawaguchi K., Karatsu T., Okura T., et al. (2016). Mechanochromic luminescence based on crystal-to-crystal transformation mediated by a transient amorphous state. Chem. Mater. 28, 234–241. 10.1021/acs.chemmater.5b03932 DOI
Yanez-Aulestia A., Gupta N. K., Hernandez M., Osorio-Toribio G., Sanchez-Gonzalez E., Guzman-Vargas A., et al. (2022). Gold nanoparticles: Current and upcoming biomedical applications in sensing, drug, and gene delivery. Chem. Commun. 58, 10886–10895. 10.1039/d2cc04826d PubMed DOI
Ying P., Yu J., Su W. (2021). Liquid‐assisted grinding mechanochemistry in the synthesis of pharmaceuticals. Adv. Synth. Catal. 363, 1246–1271. 10.1002/adsc.202001245 DOI
Yu Y., Chen X., Yao Q., Yu Y., Yan N., Xie J. (2013). Scalable and precise synthesis of thiolated Au10–12, Au15, Au18, and Au25 nanoclusters via pH controlled CO reduction. Chem. Mater. 25 (6), 946–952. 10.1021/cm304098x DOI
Yu Y., Luo Z., Chevrier D. M., Leong D. T., Zhang P., Jiang D. E., et al. (2014). Identification of a highly luminescent Au22(SG)18 nanocluster. J. Am. Chem. Soc. 136 (4), 1246–1249. 10.1021/ja411643u PubMed DOI
Zhang X. D., Chen J., Luo Z., Wu D., Shen X., Song S. S., et al. (2014a). Enhanced tumor accumulation of sub-2 nm gold nanoclusters for cancer radiation therapy. Adv. Healthc. Mater. 3, 133–141. 10.1002/adhm.201300189 PubMed DOI
Zhang X. D., Luo Z., Chen J., Shen X., Song S., Sun Y., et al. (2014b). Ultrasmall Au10-12(SG)10-12 nanomolecules for high tumor specificity and cancer radiotherapy. Adv. Mater. 26, 4565–4568. 10.1002/adma.201400866 PubMed DOI
Zhang X. D., Luo Z., Chen J., Song S., Yuan X., Shen X., et al. (2015). Ultrasmall glutathione-protected gold nanoclusters as next generation radiotherapy sensitizers with high tumor uptake and high renal clearance. Sci. Rep. 5, 8669. 10.1038/srep08669 PubMed DOI PMC
Zhou C., Sun C., Yu M., Qin Y., Wang J., Kim M., et al. (2010). Luminescent gold nanoparticles with mixed valence states generated from dissociation of polymeric Au (I) thiolates. J. Phys. Chem. C 114 (17), 7727–7732. 10.1021/jp9122584 PubMed DOI PMC