Synthesis, identification, chiral separation and crystal structure of (3R,4R,7S,8S)-3,4,7,8-tetrachlorodecane and its stereoisomers
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37346323
PubMed Central
PMC10279909
DOI
10.1016/j.heliyon.2023.e16987
PII: S2405-8440(23)04194-4
Knihovny.cz E-zdroje
- Klíčová slova
- Amylose, Chiral supercritical fluid chromatography, Chlorinated paraffins, Gas chromatography, X-ray diffraction,
- Publikační typ
- časopisecké články MeSH
Chlorinated paraffins (CPs) are a notoriously known class of compounds that stand amongst the most wide-spread persistent organic pollutants. Therefore, their reliable, repeatable, and reproducible quantitative analysis using well-defined reference standards is of utmost importance. In view of the increasing demand for constitutionally and stereochemically defined CP standards, we have synthesized a stereoisomeric mixture of 3,4,7,8-tetrachlorodecane. One stereoisomer - (3R,4R,7S,8S)-3,4,7,8-tetrachlorodecane was separated from the mixture, and enriched fractions of residual stereoisomers were achieved through crystallisation of the residual mother liquors. The molecular structure of the single isolated stereoisomer was confirmed through single-crystal X-ray crystallographic data. One fraction of 3,4,7,8-tetrachlorodecane stereoisomers was successfully separated on a chiral stationary phase using supercritical fluid chromatography hyphenated to mass spectrometry (column: Chiral ART Amylose-C; mobile phase: CO2/MeOH (96/4 v/v) with 0.1% diethylamine). The reported separation of stereoisomers is unprecedented in CP analysis so far.
Zobrazit více v PubMed
El-Shahawi M.S., Hamza A., Bashammakh A.S., Al-Saggaf W.T. An overview on the accumulation, distribution, transformations, toxicity and analytical methods for the monitoring of persistent organic pollutants. Talanta. 2010;80:1587–1597. doi: 10.1016/j.talanta.2009.09.055. PubMed DOI
Gobas F.A., de Wolf W., Burkhard L.P., Verbruggen E., Plotzke K. Revisiting bioaccumulation criteria for POPs and PBT assessments, integr. Environ. Assess. Manag. 2009;5:624–637. doi: 10.1897/IEAM_2008-089.1. PubMed DOI
United Nations Treaty Collection . Environment; Stockholm: 2001. Stockholm Convention on Persistent Organic Pollutants.https://treaties.un.org/Pages/ViewDetails.aspx?src=IND&mtdsg_no=XXVII-15&chapter=27&clang=_en Chapter XXVII.
Stockholm Convention on Persistent Organic Pollutants (POPs) United Nations Environment Programme; Switzerland: 2019. http://chm.pops.int/theconvention/overview/textoftheconvention/tabid/2232/default.aspx
Vetter W., Sprengel J., Krätschmer K. Chlorinated paraffins – a historical consideration including remarks on their complexity. Chemosphere. 2022;287 doi: 10.1016/j.chemosphere.2021.132032. PubMed DOI
Tomy G.T. In: Chlorinated Paraffins. Boer J., editor. Springer Berlin Heidelberg; Berlin, Heidelberg: 2010. Analysis of chlorinated paraffins in environmental matrices: the ultimate challenge for the analytical chemist; pp. 83–106. DOI
Kalinowska K., Lenartowicz P., Namieśnik J., Marć M. Analytical procedures for short chain chlorinated paraffins determination - how to make them greener? Sci. Total Environ. 2019;671:309–323. doi: 10.1016/j.scitotenv.2019.03.312. PubMed DOI
van Mourik L.M., van der Veen I., Crum S., de Boer J. Developments and interlaboratory study of the analysis of short-chain chlorinated paraffins. Trends Anal. Chem. 2018;102:32–40. doi: 10.1016/j.trac.2018.01.004. DOI
Mézière M., Cariou R., Larvor F., Bichon E., Guitton Y., Marchand P., Dervilly G., Le Bizec B. Optimized characterization of short-, medium, and long-chain chlorinated paraffins in liquid chromatography-high resolution mass spectrometry. J. Chom. A. 2020;1619 doi: 10.1016/j.chroma.2020.460927. PubMed DOI
van Mourik L.M., Lava R., O'Brien J., Leonards P.E.G., de Boer J., Ricci M. The underlying challenges that arise when analysing short-chain chlorinated paraffins in environmental matrices. J. Chromatogr., A. 2020;1610 doi: 10.1016/j.chroma.2019.460550. PubMed DOI
Schinkel L., Bogdal C., Canonica E., Cariou R., Bleiner D., McNeill K., Heeb N.V. Analysis of medium-chain and long-chain chlorinated paraffins: the urgent need for more specific analytical standards. Environ. Sci. Technol. Lett. 2018;5:708–717. https://pubs.acs.org/doi/10.1021/acs.estlett.8b00537 DOI
Fernandes A.R., Vetter W., Dirks C., van Mourik L., Cariou R., Sprengel J., Heeb N., Lentjes A., Krätschmer K. Determination of chlorinated paraffins (CPs): analytical conundrums and the pressing need for reliable and relevant standards. Chemosphere. 2022;286 doi: 10.1016/j.chemosphere.2021.131878. PubMed DOI
Frenzen G., Sippel H., Coelhan M. The relative configuration of a stereoisomer of 1,2,5,6,9,10-hexachlorodecane. Acta Crystallogr. C. 1999;55
Coelhan M. Synthesis of several single C10, C11 and C12 chloroalkanes. Fresenius Environ. Bull. 2003;12:443–450. doi: 10.1107/S0108270199099965. DOI
Knobloch M.C., Schinkel L., Kohler H.-P.E., Mathis F., Kern S., Bleiner D., Heeb N.V. Transformation of short-chain chlorinated paraffins and olefins with the bacterial dehalogenase LinB from Sphingobium Indicum – kinetic models for the homologue-specific conversion of reactive and persistent material. Chemosphere. 2021;283 doi: 10.1016/j.chemosphere.2021.131199. PubMed DOI
Zhang Q., Wang J., Zhu J., Liu J., Zhang J., Zhao M. Assessment of the endocrine-disrupting effects of short-chain chlorinated paraffins in in vitro models. Environ. Int. 2016;94:43–50. doi: 10.1016/j.envint.2016.05.007. PubMed DOI
Ali I., Gupta V.K., Aboul-Enein H.Y. Chirality: a challenge for the environmental scientists. Curr. Sci. 2003;84:152–156.
Ali I., Aboul-Enein H.Y., Ghanem A. Enantioselective toxicity and carcinogenesis. Curr. Pharmaceut. Anal. 2005;1:109–125. doi: 10.2174/1573412052953328. DOI
West C. Current trends in supercritical fluid chromatography. Anal. Bioanal. Chem. 2018;410:6441–6457. doi: 10.1007/s00216-018-1267-4. PubMed DOI
Riddell N., van Bavel B., Jogsten I.E., McCrindle R., McAlees A., Chittim B. Coupling supercritical fluid chromatography to positive ion atmospheric pressure ionization mass spectrometry: ionization optimization of halogenated environmental contaminants. Int. J. Mass Spectrom. 2017;421:156–163. doi: 10.1016/j.ijms.2017.07.005. DOI
Hatzimarinaki M., Orfanopoulos M. Novel methodology for the preparation of five-, seven-, and nine-membered fused rings on C60. Org. Lett. 2006;8:1775–1778. https://pubs.acs.org/doi/10.1021/ol0600887 PubMed DOI
Ishmuratov G.Y., Yakovleva M.P., Ganieva V.A., Kharisov R.Y., Gazetdinov R.R., Abulkaramova A.M., Tolstikov G.A. Synthesis of 3S-methylundec-1-ylbromide, a key synthon in the synthesis of (S,S,S)-diprionylacetate, from L-(-)-menthol. Chem. Nat. Compd. 2006;42:92–95. doi: 10.1007/s10600-006-0043-4. DOI
Farfán P., Gómez S., Restrepo A. Dissection of the mechanism of the Wittig reaction. J. Org. Chem. 2019;84:14644–14658. https://pubs.acs.org/doi/full/10.1021/acs.joc.9b02224 PubMed DOI
Bosshardt H., Schlosser M. Die Strukturdynamik von Pentadienylmetall-Verbindungen mit endständiger Alkyl-Gruppe: zugleich «stereoselektive» und «stereodefensive» Synthese eines natürlichen Riechstoffes. Helv. Chim. Acta. 1980;63:2393–2403. doi: 10.1002/hlca.19800630832. DOI
Patel N.R., Kelly C.B., Jouffroy M., Molander G.A. Engaging alkenyl halides with alkylsilicates via photoredox dual catalysis. Org. Lett. 2016;18:764–767. doi: 10.1021/acs.orglett.6b00024. PubMed DOI PMC
Burg F., Rovis T.J. Diastereoselective three-component 3,4-amino oxygenation of 1,3-dienes catalyzed by a cationic heptamethylindenyl rhodium(III) complex. J. Am. Chem. Soc. 2021;143:17964–17969. doi: 10.1021/jacs.1c09276. PubMed DOI PMC
Roberts I., Kimball G.E. The halogenation of ethylenes. J. Am. Chem. Soc. 1937;59:947–948. https://pubs.acs.org/doi/abs/10.1021/ja01284a507 DOI
Lerner L. Small-Scale Synthesis of Laboratory Reagents with Reaction Modeling. 1 ed. CRC Press; United States: 2011. Chlorine; pp. 141–142.
Pedersen D.S., Rosenbohm C. Dry column vacuum chromatography. Synthesis. 2001:2431–2434. doi: 10.1055/s-2001-18722. 2001. DOI
Bruker . Bruker AXS Inc.; Madison, Wisconsin, USA: 2021. APEX4, SAINT and SADABS.
Palatinus L., Chapuis G. SUPERFLIP–a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J. Appl. Cryst. 2007;40:786–790. doi: 10.1107/S0021889807029238. DOI
Betteridge P.W., Carruthers J.R., Cooper R.I., Prout K., Watkin D.J. CRYSTALS version 12: software for guided crystal structure analysis. J. Appl. Cryst. 2003;36:1487. doi: 10.1107/S0021889803021800. DOI
1H NMR Spectrum; Triphenylpropylphosphonium Bromide. National Institute of Advanced Industrial Science and Technology (AIST); 1999. https://sdbs.db.aist.go.jp/sdbs/cgi-bin/direct_frame_disp.cgi?sdbsno=15647&spectrum_type=HNMR&fname=HSP47000 (accessed 2023-04-28)
Moret E., Desponds O., Schlosser M. 1,(ω - 1)-Dienes: solvent controlled unilateral or bilateral metalation. J. Organomet. Chem. 1991;409:83–91. doi: 10.1016/0022-328X(91)86133-B. DOI