Synthesis, identification, chiral separation and crystal structure of (3R,4R,7S,8S)-3,4,7,8-tetrachlorodecane and its stereoisomers

. 2023 Jun ; 9 (6) : e16987. [epub] 20230603

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37346323
Odkazy

PubMed 37346323
PubMed Central PMC10279909
DOI 10.1016/j.heliyon.2023.e16987
PII: S2405-8440(23)04194-4
Knihovny.cz E-zdroje

Chlorinated paraffins (CPs) are a notoriously known class of compounds that stand amongst the most wide-spread persistent organic pollutants. Therefore, their reliable, repeatable, and reproducible quantitative analysis using well-defined reference standards is of utmost importance. In view of the increasing demand for constitutionally and stereochemically defined CP standards, we have synthesized a stereoisomeric mixture of 3,4,7,8-tetrachlorodecane. One stereoisomer - (3R,4R,7S,8S)-3,4,7,8-tetrachlorodecane was separated from the mixture, and enriched fractions of residual stereoisomers were achieved through crystallisation of the residual mother liquors. The molecular structure of the single isolated stereoisomer was confirmed through single-crystal X-ray crystallographic data. One fraction of 3,4,7,8-tetrachlorodecane stereoisomers was successfully separated on a chiral stationary phase using supercritical fluid chromatography hyphenated to mass spectrometry (column: Chiral ART Amylose-C; mobile phase: CO2/MeOH (96/4 v/v) with 0.1% diethylamine). The reported separation of stereoisomers is unprecedented in CP analysis so far.

Zobrazit více v PubMed

El-Shahawi M.S., Hamza A., Bashammakh A.S., Al-Saggaf W.T. An overview on the accumulation, distribution, transformations, toxicity and analytical methods for the monitoring of persistent organic pollutants. Talanta. 2010;80:1587–1597. doi: 10.1016/j.talanta.2009.09.055. PubMed DOI

Gobas F.A., de Wolf W., Burkhard L.P., Verbruggen E., Plotzke K. Revisiting bioaccumulation criteria for POPs and PBT assessments, integr. Environ. Assess. Manag. 2009;5:624–637. doi: 10.1897/IEAM_2008-089.1. PubMed DOI

United Nations Treaty Collection . Environment; Stockholm: 2001. Stockholm Convention on Persistent Organic Pollutants.https://treaties.un.org/Pages/ViewDetails.aspx?src=IND&mtdsg_no=XXVII-15&chapter=27&clang=_en Chapter XXVII.

Stockholm Convention on Persistent Organic Pollutants (POPs) United Nations Environment Programme; Switzerland: 2019. http://chm.pops.int/theconvention/overview/textoftheconvention/tabid/2232/default.aspx

Vetter W., Sprengel J., Krätschmer K. Chlorinated paraffins – a historical consideration including remarks on their complexity. Chemosphere. 2022;287 doi: 10.1016/j.chemosphere.2021.132032. PubMed DOI

Tomy G.T. In: Chlorinated Paraffins. Boer J., editor. Springer Berlin Heidelberg; Berlin, Heidelberg: 2010. Analysis of chlorinated paraffins in environmental matrices: the ultimate challenge for the analytical chemist; pp. 83–106. DOI

Kalinowska K., Lenartowicz P., Namieśnik J., Marć M. Analytical procedures for short chain chlorinated paraffins determination - how to make them greener? Sci. Total Environ. 2019;671:309–323. doi: 10.1016/j.scitotenv.2019.03.312. PubMed DOI

van Mourik L.M., van der Veen I., Crum S., de Boer J. Developments and interlaboratory study of the analysis of short-chain chlorinated paraffins. Trends Anal. Chem. 2018;102:32–40. doi: 10.1016/j.trac.2018.01.004. DOI

Mézière M., Cariou R., Larvor F., Bichon E., Guitton Y., Marchand P., Dervilly G., Le Bizec B. Optimized characterization of short-, medium, and long-chain chlorinated paraffins in liquid chromatography-high resolution mass spectrometry. J. Chom. A. 2020;1619 doi: 10.1016/j.chroma.2020.460927. PubMed DOI

van Mourik L.M., Lava R., O'Brien J., Leonards P.E.G., de Boer J., Ricci M. The underlying challenges that arise when analysing short-chain chlorinated paraffins in environmental matrices. J. Chromatogr., A. 2020;1610 doi: 10.1016/j.chroma.2019.460550. PubMed DOI

Schinkel L., Bogdal C., Canonica E., Cariou R., Bleiner D., McNeill K., Heeb N.V. Analysis of medium-chain and long-chain chlorinated paraffins: the urgent need for more specific analytical standards. Environ. Sci. Technol. Lett. 2018;5:708–717. https://pubs.acs.org/doi/10.1021/acs.estlett.8b00537 DOI

Fernandes A.R., Vetter W., Dirks C., van Mourik L., Cariou R., Sprengel J., Heeb N., Lentjes A., Krätschmer K. Determination of chlorinated paraffins (CPs): analytical conundrums and the pressing need for reliable and relevant standards. Chemosphere. 2022;286 doi: 10.1016/j.chemosphere.2021.131878. PubMed DOI

Frenzen G., Sippel H., Coelhan M. The relative configuration of a stereoisomer of 1,2,5,6,9,10-hexachlorodecane. Acta Crystallogr. C. 1999;55

Coelhan M. Synthesis of several single C10, C11 and C12 chloroalkanes. Fresenius Environ. Bull. 2003;12:443–450. doi: 10.1107/S0108270199099965. DOI

Knobloch M.C., Schinkel L., Kohler H.-P.E., Mathis F., Kern S., Bleiner D., Heeb N.V. Transformation of short-chain chlorinated paraffins and olefins with the bacterial dehalogenase LinB from Sphingobium Indicum – kinetic models for the homologue-specific conversion of reactive and persistent material. Chemosphere. 2021;283 doi: 10.1016/j.chemosphere.2021.131199. PubMed DOI

Zhang Q., Wang J., Zhu J., Liu J., Zhang J., Zhao M. Assessment of the endocrine-disrupting effects of short-chain chlorinated paraffins in in vitro models. Environ. Int. 2016;94:43–50. doi: 10.1016/j.envint.2016.05.007. PubMed DOI

Ali I., Gupta V.K., Aboul-Enein H.Y. Chirality: a challenge for the environmental scientists. Curr. Sci. 2003;84:152–156.

Ali I., Aboul-Enein H.Y., Ghanem A. Enantioselective toxicity and carcinogenesis. Curr. Pharmaceut. Anal. 2005;1:109–125. doi: 10.2174/1573412052953328. DOI

West C. Current trends in supercritical fluid chromatography. Anal. Bioanal. Chem. 2018;410:6441–6457. doi: 10.1007/s00216-018-1267-4. PubMed DOI

Riddell N., van Bavel B., Jogsten I.E., McCrindle R., McAlees A., Chittim B. Coupling supercritical fluid chromatography to positive ion atmospheric pressure ionization mass spectrometry: ionization optimization of halogenated environmental contaminants. Int. J. Mass Spectrom. 2017;421:156–163. doi: 10.1016/j.ijms.2017.07.005. DOI

Hatzimarinaki M., Orfanopoulos M. Novel methodology for the preparation of five-, seven-, and nine-membered fused rings on C60. Org. Lett. 2006;8:1775–1778. https://pubs.acs.org/doi/10.1021/ol0600887 PubMed DOI

Ishmuratov G.Y., Yakovleva M.P., Ganieva V.A., Kharisov R.Y., Gazetdinov R.R., Abulkaramova A.M., Tolstikov G.A. Synthesis of 3S-methylundec-1-ylbromide, a key synthon in the synthesis of (S,S,S)-diprionylacetate, from L-(-)-menthol. Chem. Nat. Compd. 2006;42:92–95. doi: 10.1007/s10600-006-0043-4. DOI

Farfán P., Gómez S., Restrepo A. Dissection of the mechanism of the Wittig reaction. J. Org. Chem. 2019;84:14644–14658. https://pubs.acs.org/doi/full/10.1021/acs.joc.9b02224 PubMed DOI

Bosshardt H., Schlosser M. Die Strukturdynamik von Pentadienylmetall-Verbindungen mit endständiger Alkyl-Gruppe: zugleich «stereoselektive» und «stereodefensive» Synthese eines natürlichen Riechstoffes. Helv. Chim. Acta. 1980;63:2393–2403. doi: 10.1002/hlca.19800630832. DOI

Patel N.R., Kelly C.B., Jouffroy M., Molander G.A. Engaging alkenyl halides with alkylsilicates via photoredox dual catalysis. Org. Lett. 2016;18:764–767. doi: 10.1021/acs.orglett.6b00024. PubMed DOI PMC

Burg F., Rovis T.J. Diastereoselective three-component 3,4-amino oxygenation of 1,3-dienes catalyzed by a cationic heptamethylindenyl rhodium(III) complex. J. Am. Chem. Soc. 2021;143:17964–17969. doi: 10.1021/jacs.1c09276. PubMed DOI PMC

Roberts I., Kimball G.E. The halogenation of ethylenes. J. Am. Chem. Soc. 1937;59:947–948. https://pubs.acs.org/doi/abs/10.1021/ja01284a507 DOI

Lerner L. Small-Scale Synthesis of Laboratory Reagents with Reaction Modeling. 1 ed. CRC Press; United States: 2011. Chlorine; pp. 141–142.

Pedersen D.S., Rosenbohm C. Dry column vacuum chromatography. Synthesis. 2001:2431–2434. doi: 10.1055/s-2001-18722. 2001. DOI

Bruker . Bruker AXS Inc.; Madison, Wisconsin, USA: 2021. APEX4, SAINT and SADABS.

Palatinus L., Chapuis G. SUPERFLIP–a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J. Appl. Cryst. 2007;40:786–790. doi: 10.1107/S0021889807029238. DOI

Betteridge P.W., Carruthers J.R., Cooper R.I., Prout K., Watkin D.J. CRYSTALS version 12: software for guided crystal structure analysis. J. Appl. Cryst. 2003;36:1487. doi: 10.1107/S0021889803021800. DOI

1H NMR Spectrum; Triphenylpropylphosphonium Bromide. National Institute of Advanced Industrial Science and Technology (AIST); 1999. https://sdbs.db.aist.go.jp/sdbs/cgi-bin/direct_frame_disp.cgi?sdbsno=15647&spectrum_type=HNMR&fname=HSP47000 (accessed 2023-04-28)

Moret E., Desponds O., Schlosser M. 1,(ω - 1)-Dienes: solvent controlled unilateral or bilateral metalation. J. Organomet. Chem. 1991;409:83–91. doi: 10.1016/0022-328X(91)86133-B. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...