Episignature analysis of moderate effects and mosaics
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37365401
PubMed Central
PMC10474287
DOI
10.1038/s41431-023-01406-9
PII: 10.1038/s41431-023-01406-9
Knihovny.cz E-zdroje
- MeSH
- alely MeSH
- fenotyp MeSH
- lidé MeSH
- metylace DNA * MeSH
- mnohočetné abnormality * genetika MeSH
- mozaicismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
DNA methylation classifiers ("episignatures") help to determine the pathogenicity of variants of uncertain significance (VUS). However, their sensitivity is limited due to their training on unambiguous cases with strong-effect variants so that the classification of variants with reduced effect size or in mosaic state may fail. Moreover, episignature evaluation of mosaics as a function of their degree of mosaicism has not been developed so far. We improved episignatures with respect to three categories. Applying (i) minimum-redundancy-maximum-relevance feature selection we reduced their length by up to one order of magnitude without loss of accuracy. Performing (ii) repeated re-training of a support vector machine classifier by step-wise inclusion of cases in the training set that reached probability scores larger than 0.5, we increased the sensitivity of the episignature-classifiers by 30%. In the newly diagnosed patients we confirmed the association between DNA methylation aberration and age at onset of KMT2B-deficient dystonia. Moreover, we found evidence for allelic series, including KMT2B-variants with moderate effects and comparatively mild phenotypes such as late-onset focal dystonia. Retrained classifiers also can detect mosaics that previously remained below the 0.5-threshold, as we showed for KMT2D-associated Kabuki syndrome. Conversely, episignature-classifiers are able to revoke erroneous exome calls of mosaicism, as we demonstrated by (iii) comparing presumed mosaic cases with a distribution of artificial in silico-mosaics that represented all the possible variation in degree of mosaicism, variant read sampling and methylation analysis.
Centre de Génétique Humaine Institut de Pathologie et de Génétique ASBL 6041 Gosselies Belgium
Centre for Rare Diseases University of Tuebingen 72076 Tuebingen Germany
Chair of Neurogenetics Technical University of Munich School of Medicine 81675 Munich Germany
Department of Neurology Medizinische Universität 6020 Insbruck Austria
Department of Neurology Technical University of Munich School of Medicine 81675 Munich Germany
Department of Pediatric and Adolescent Medicine Medical University of Vienna 1090 Wien Austria
Fondazione IRCCS Istituto Neurologico Carlo Besta 20133 Milano Italy
Institute for Genomic Statistics and Bioinformatics Universität Bonn 53127 Bonn Germany
Institute of Human Genetics School of Medicine University Hospital Bonn 53127 Bonn Germany
Institute of Human Genetics Technical University of Munich School of Medicine 81675 Munich Germany
Institute of Human Genetics Universitätsklinikum Essen 45122 Essen Germany
Institute of Human Genetics Universitätsklinikum Schleswig Holstein 23538 Lübeck Germany
Institute of Medical Genetics and Applied Genomics University of Tuebingen 72076 Tübingen Germany
Institute of Neurogenomics Helmholtz Munich 85764 Neuherberg Germany
Zobrazit více v PubMed
Fahrner JA, Bjornsson HT. Mendelian disorders of the epigenetic machinery: postnatal malleability and therapeutic prospects. Hum Mol Genet [Internet] 2019;28:R254–64. doi: 10.1093/hmg/ddz174. PubMed DOI PMC
Levy MA, McConkey H, Kerkhof J, Barat-Houari M, Bargiacchi S, Biamino E, et al. Novel diagnostic DNA methylation episignatures expand and refine the epigenetic landscapes of Mendelian disorders. Hum Genet Genomics Adv [Internet] 2022;3:100075.. doi: 10.1016/j.xhgg.2021.100075. PubMed DOI PMC
Levy MA, Relator R, McConkey H, Pranckeviciene E, Kerkhof J, Barat‐Houari M, et al. Functional correlation of genome‐wide DNA methylation profiles in genetic neurodevelopmental disorders. Hum Mutat [Internet] 2022;43:1609–28. doi: 10.1002/humu.24446. PubMed DOI
Mirza-Schreiber N, Zech M, Wilson R, Brunet T, Wagner M, Jech R, et al. Blood DNA methylation provides an accurate biomarker of KMT2B -related dystonia and predicts onset. Brain [Internet] 2022;145:644–54. doi: 10.1093/brain/awab360. PubMed DOI
Lee S, Ochoa E, Barwick K, Cif L, Rodger F, Docquier F, et al. Comparison of methylation episignatures in KMT2B - and KMT2D -related human disorders. Epigenomics [Internet] 2022;14:537–47. doi: 10.2217/epi-2021-0521. PubMed DOI
Ciolfi A, Foroutan A, Capuano A, Pedace L, Travaglini L, Pizzi S, et al. Childhood-onset dystonia-causing KMT2B variants result in a distinctive genomic hypermethylation profile. Clin Epigenetics [Internet] 2021;13:157.. doi: 10.1186/s13148-021-01145-y. PubMed DOI PMC
Aref-Eshghi E, Rodenhiser DI, Schenkel LC, Lin H, Skinner C, Ainsworth P, et al. Genomic DNA Methylation Signatures Enable Concurrent Diagnosis and Clinical Genetic Variant Classification in Neurodevelopmental Syndromes. Am J Hum Genet. 2018;102:156–74. doi: 10.1016/j.ajhg.2017.12.008. PubMed DOI PMC
Choufani S, McNiven V, Cytrynbaum C, Jangjoo M, Adam MP, Bjornsson HT, et al. An HNRNPK-specific DNA methylation signature makes sense of missense variants and expands the phenotypic spectrum of Au-Kline syndrome. Am J Hum Genet [Internet] 2022;109:1867–84. doi: 10.1016/j.ajhg.2022.08.014. PubMed DOI PMC
Acuna-Hidalgo R, Bo T, Kwint MP, van de Vorst M, Pinelli M, Veltman JA, et al. Post-zygotic Point Mutations Are an Underrecognized Source of De Novo Genomic Variation. Am J Hum Genet [Internet] 2015;97:67–74. doi: 10.1016/j.ajhg.2015.05.008. PubMed DOI PMC
Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, Hansen KD, et al. Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics. 2014;30:1363–9. doi: 10.1093/bioinformatics/btu049. PubMed DOI PMC
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria [Internet]. 2020. Available from: https://www.r-project.org/.
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res [Internet] 2015;43:e47–e47. doi: 10.1093/nar/gkv007. PubMed DOI PMC
De Jay N, Papillon-Cavanagh S, Olsen C, El-Hachem N, Bontempi G, Haibe-Kains B. mRMRe: an R package for parallelized mRMR ensemble feature selection. Bioinforma [Internet] 2013;29:2365–8. doi: 10.1093/bioinformatics/btt383. PubMed DOI
Meyer D, Dimitriadou E, Horni K, Weingessel A, Leisch F, Chang C-C, et al. e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien. R package version 1.7-11 [Internet]. 2022. Available from: https://cran.r-project.org/package=e1071.
Platt JC. Probabilities for SV Machines. In: Smola AJ, Bartlett PL, Schölkopf B, Schuurmans D. editors. Advances in Large Margin Classifiers [Internet]. Cambridge, Massachusetts: MIT Press; 2000. p. 61–74. Available from: https://ww9w.semanticscholar.org/paper/Probabilistic-Outputs-for-SVMs-and-Comparisons-to-Platt-Karampatziakis/18a72c64859a700c16685386514c30d70765a63e.
Therneau TM. A Package for Survival Analysis in R. R package version 3.4-0 [Internet]. 2022. Available from: https://cran.r-project.org/package=survival.
Ding C, Peng H. Minimum redundancy feature selection from microarray gene expression data. J Bioinform Comput Biol [Internet] 2005;03:185–205. doi: 10.1142/S0219720005001004. PubMed DOI
Fang H, Wu Y, Narzisi G, ORawe JA, Barrón LTJ, Rosenbaum J, et al. Reducing INDEL calling errors in whole genome and exome sequencing data. Genome Med [Internet] 2014;6:89.. doi: 10.1186/s13073-014-0089-z. PubMed DOI PMC
Poplin R, Chang P-C, Alexander D, Schwartz S, Colthurst T, Ku A, et al. A universal SNP and small-indel variant caller using deep neural networks. Nat Biotechnol [Internet] 2018;36:983–7. doi: 10.1038/nbt.4235. PubMed DOI
Makrythanasis P, van Bon B, Steehouwer M, Rodríguez-Santiago B, Simpson M, Dias P, et al. MLL2 mutation detection in 86 patients with Kabuki syndrome: a genotype-phenotype study. Clin Genet [Internet] 2013;84:539–45. doi: 10.1111/cge.12081. PubMed DOI
Butcher DT, Cytrynbaum C, Turinsky AL, Siu MT, Inbar-Feigenberg M, Mendoza-Londono R, et al. CHARGE and Kabuki Syndromes: Gene-Specific DNA Methylation Signatures Identify Epigenetic Mechanisms Linking These Clinically Overlapping Conditions. Am J Hum Genet [Internet] 2017;100:773–88. doi: 10.1016/j.ajhg.2017.04.004. PubMed DOI PMC
Choufani S, Gibson WT, Turinsky AL, Chung BHY, Wang T, Garg K, et al. DNA Methylation Signature for EZH2 Functionally Classifies Sequence Variants in Three PRC2 Complex Genes. Am J Hum Genet [Internet] 2020;106:596–610. doi: 10.1016/j.ajhg.2020.03.008. PubMed DOI PMC
Zhang Y-H, Li Z, Zeng T, Chen L, Li H, Gamarra M, et al. Investigating gene methylation signatures for fetal intolerance prediction. PLoS One [Internet] 2021;16:e0250032. doi: 10.1371/journal.pone.0250032. PubMed DOI PMC
van Jaarsveld RH, Reilly J, Cornips M-C, Hadders MA, Agolini E, Ahimaz P, et al. Delineation of a KDM2B-related neurodevelopmental disorder and its associated DNA methylation signature. Genet Med [Internet]. 2022 Nov; Available from: https://linkinghub.elsevier.com/retrieve/pii/S109836002200942X. PubMed PMC
Montano C, Britton JF, Harris JR, Kerkhof J, Barnes BT, Lee JA, et al. Genome‐wide DNA methylation profiling confirms a case of low‐level mosaic Kabuki syndrome 1. Am J Med Genet Part A [Internet] 2022;188:2217–25. doi: 10.1002/ajmg.a.62754. PubMed DOI PMC
Luo J, Wang Q, Cheng S, Chen A, Yuan H. [Analysis of clinical manifestation and a mosaic frameshift variant of the KMT2D gene in a Chinese patient with Kabuki syndrome] Zhonghua Yi Xue Yi Chuan Xue Za Zhi [Internet] 2021;38:861–4. PubMed