Effective isolation of cannabidiol and cannabidiolic acid free of psychotropic phytocannabinoids from hemp extract by fast centrifugal partition chromatography
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
LM2018100
MEYS Grant
22-20860S
Grantová Agentura České Republiky
A2_FPBT_2022_064
Specific university research grant
PubMed
37382652
PubMed Central
PMC10352166
DOI
10.1007/s00216-023-04782-9
PII: 10.1007/s00216-023-04782-9
Knihovny.cz E-zdroje
- Klíčová slova
- Fast centrifugal partition chromatography, Hemp extract, Phytocannabinoids, Pure cannabidiol/cannabidiolic acid, Removing ∆9-tetrahydrocannabinol/∆9-tetrahydrocannabinolic acid, Single step fractionation,
- MeSH
- Cannabis * chemie MeSH
- kanabidiol * analýza MeSH
- psychotropní léky MeSH
- rostlinné extrakty chemie MeSH
- rozpouštědla MeSH
- tetrahydrokanabinol analýza MeSH
- vysokoúčinná kapalinová chromatografie metody MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cannabidiolic acid MeSH Prohlížeč
- kanabidiol * MeSH
- psychotropní léky MeSH
- rostlinné extrakty MeSH
- rozpouštědla MeSH
- tetrahydrokanabinol MeSH
Cannabidiol (CBD), together with its precursor cannabidiolic acid (CBDA), is the major phytocannabinoid occurring in most hemp cultivars. To ensure the safe use of these compounds, their effective isolation from hemp extract is required, with special emphasis on the elimination of ∆9-tetrahydrocannabinol (∆9-THC) and ∆9-tetrahydrocannabinolic acid (∆9-THCA-A). In this study, we demonstrate the applicability of fast centrifugal partition chromatography (FCPC) as a challenging format of counter-current preparative chromatography for the isolation of CBD and CBDA free of psychotropic compounds that may occur in Cannabis sativa L. plant extracts. Thirty-eight solvent mixtures were tested to identify a suitable two-phase system for this purpose. Based on the measured partition coefficients (KD) and separation factors (α), the two-phase system consisting of n-heptane:ethyl acetate:ethanol:water (1.5:0.5:1.5:0.5; v:v:v:v) was selected as an optimal solvent mixture. Employing UHPLC-HRMS/MS for target analysis of collected fractions, the elution profiles of 17 most common phytocannabinoids were determined. Under experimental conditions, the purity of isolated CBD and CBDA was 98.9 and 95.1% (w/w), respectively. Neither of ∆9-THC nor of ∆9-THCA-A were present; only trace amounts of other biologically active compounds contained in hemp extract were detected by screening against in-house spectral library using UHPLC-HRMS.
Zobrazit více v PubMed
Piscitelli F, Di Marzo V. Cannabinoids: a class of unique natural products with unique pharmacology. Rendiconti Lincei Scienze Fisiche e Naturali. 2021:1–11.
Rock EM, Parker LA. Constituents of Cannabis sativa. In: Murillo-Rodriguez E, Pandi-Perumal SR, Monti JM, editors. Cannabinoids and Neuropsychiatric Disorders. Cham: Springer International Publishing; 2021. p. 1-13.
Bahji A, Stephenson C. International Perspectives on the Implications of Cannabis Legalization: A Systematic Review & Thematic Analysis. Int J Environ Res Public Health. 2019;16(17):3095. doi: 10.3390/ijerph16173095. PubMed DOI PMC
Bonini SA, Premoli M, Tambaro S, Kumar A, Maccarinelli G, Memo M, et al. Cannabis sativa: a comprehensive ethnopharmacological review of a medicinal plant with a long history. J Ethnopharmacol. 2018;227:300–315. doi: 10.1016/j.jep.2018.09.004. PubMed DOI
Hill AJ, Williams CM, Whalley BJ, Stephens GJ. Phytocannabinoids as novel therapeutic agents in CNS disorders. Pharmacol Ther. 2012;133(1):79–97. doi: 10.1016/j.pharmthera.2011.09.002. PubMed DOI
EUR-Lex-62018CJ0663. Court of Justice of the European Union. 2020. https://eur-lex.europa.eu/legal-content/GA/TXT/?uri=CELEX:62018CJ0663.
Nebbia Carlo. Scientific Opinion on the risks for human health related to the presence of tetrahydrocannabinol (THC) in milk and other food of animal origin. EFSA Journal. 2016;13(6). 10.2903/j.efsa.2015.4141.
Hajslova J, Fenclova M, Benes F, Russo E, Kubu P, editors. Assessing trends of CBD oils quality at the EU market. 29th Annual Symposium of the International Cannabinoid Research Society; 2019; Bethesda Maryland, USA.
Aizpurua-Olaizola O, Soydaner U, Öztürk E, Schibano D, Simsir Y, Navarro P, et al. Evolution of the cannabinoid and terpene content during the growth of Cannabis sativa plants from different chemotypes. J Nat Prod. 2016;79(2):324–331. doi: 10.1021/acs.jnatprod.5b00949. PubMed DOI
AL Ubeed HMS, Bhuyan DJ, Alsherbiny MA, Basu A, Vuong QV. A comprehensive review on the techniques for extraction of bioactive compounds from medicinal cannabis. Molecules. 2022;27(3):604. PubMed PMC
Pattnaik F, Nanda S, Mohanty S, Dalai AK, Kumar V, Ponnusamy SK, et al. Cannabis: chemistry, extraction and therapeutic applications. Chemosphere. 2022;289:133012. doi: 10.1016/j.chemosphere.2021.133012. PubMed DOI
Radwan MM, Wanas AS, Chandra S, ElSohly MA. Natural cannabinoids of Cannabis and methods of analysis. In: Chandra S, Lata H, ElSohly MA, editors. Cannabis sativa L - Botany and Biotechnology. Cham: Springer International Publishing; 2017. p. 161-82.
Liu Y, Liu H-Y, Li S-H, Ma W, Wu D-T, Li H-B, et al. Cannabis sativa bioactive compounds and their extraction, separation, purification, and identification technologies: an updated review. TrAC Trends Anal Chem. 2022;149:116554. doi: 10.1016/j.trac.2022.116554. DOI
Hazekamp A, Simons R, Peltenburg-Looman A, Sengers M, van Zweden R, Verpoorte R. Preparative isolation of cannabinoids from Cannabis sativa by centrifugal partition chromatography. J Liq Chromatogr Relat Technol. 2004;27(15):2421–2439. doi: 10.1081/JLC-200028170. DOI
Popp JR, Petrakis EA, Angelis A, Halabalaki M, Bonn GK, Stuppner H, et al. Rapid isolation of acidic cannabinoids from Cannabis sativa L. using pH-zone-refining centrifugal partition chromatography. J Chromatogr A. 2019;1599:196–202. PubMed
Luca SV, Braumann L, Gerigk M, Frank O, Minceva M. Separation of minor cannabinoids from hemp extract with trapping multiple dual mode liquid-liquid chromatography. J Chromatogr A. 2021;1658:462608. doi: 10.1016/j.chroma.2021.462608. PubMed DOI
Berthod A, Maryutina T, Spivakov B, Shpigun O, Sutherland IA. Countercurrent chromatography in analytical chemistry (IUPAC Technical Report) Pure Appl Chem. 2009;81(2):355–387. doi: 10.1351/PAC-REP-08-06-05. DOI
Zhang Q-W, Lin L-G, Ye W-C. Techniques for extraction and isolation of natural products: a comprehensive review. Chin Med. 2018;13(1):20. doi: 10.1186/s13020-018-0177-x. PubMed DOI PMC
Bojczuk M, Żyżelewicz D, Hodurek P. Centrifugal partition chromatography – a review of recent applications and some classic references. J Sep Sci. 2017;40(7):1597–1609. doi: 10.1002/jssc.201601221. PubMed DOI
Michel T, Destandau E, Elfakir C. New advances in countercurrent chromatography and centrifugal partition chromatography: focus on coupling strategy. Anal Bioanal Chem. 2014;406(4):957–969. doi: 10.1007/s00216-013-7017-8. PubMed DOI
DeAmicis C, Edwards NA, Giles MB, Harris GH, Hewitson P, Janaway L, et al. Comparison of preparative reversed phase liquid chromatography and countercurrent chromatography for the kilogram scale purification of crude spinetoram insecticide. J Chromatogr A. 2011;1218(36):6122–6127. doi: 10.1016/j.chroma.2011.06.073. PubMed DOI
Marston A, Hostettmann K. Developments in the application of counter-current chromatography to plant analysis. J Chromatogr A. 2006;1112(1):181–194. doi: 10.1016/j.chroma.2005.10.018. PubMed DOI
Huang X-Y, Ignatova S, Hewitson P, Di D-L. An overview of recent progress in elution mode of counter current chromatography. TrAC Trends Anal Chem. 2016;77:214–225. doi: 10.1016/j.trac.2015.08.006. DOI
Benes F, Binova Z, Dzuman Z, Peukertova P, Fenclova M, Hajslova J. Determination of seventeen phytocannabinoids in various matrices by UHPLC–HRMS/MS. LCGC Europe. 2020;33(1):8–16.
Wang D, Zhao H, Zhu H, Wen L, Yu J, Li L, et al. A novel method for highly efficient biotransformation and separation of isoflavone aglycones from soybean with high-speed counter-current chromatography. Ind Crops Prod. 2019;129:224–230. doi: 10.1016/j.indcrop.2018.11.043. DOI
Berthod A, Hassoun M, Ruiz-Angel MJ. Alkane effect in the Arizona liquid systems used in countercurrent chromatography. Anal Bioanal Chem. 2005;383(2):327–340. doi: 10.1007/s00216-005-0016-7. PubMed DOI
Friesen JB, McAlpine JB, Chen S-N, Pauli GF. Countercurrent separation of natural products: an update. J Nat Prod. 2015;78(7):1765–1796. doi: 10.1021/np501065h. PubMed DOI PMC
Hopmann E, Arlt W, Minceva M. Solvent system selection in counter-current chromatography using conductor-like screening model for real solvents. J Chromatogr A. 2011;1218(2):242–250. doi: 10.1016/j.chroma.2010.11.018. PubMed DOI
Garrard IJ. Simple approach to the development of a CCC solvent selection protocol suitable for automation. J Liq Chromatogr Relat Technol. 2005;28(12–13):1923–1935. doi: 10.1081/JLC-200063571. DOI
Friesen JB, Pauli GF. Rational development of solvent system families in counter-current chromatography. J Chromatogr A. 2007;1151(1):51–59. doi: 10.1016/j.chroma.2007.01.126. PubMed DOI
Buddrick O, Jones OAH, Morrison PD, Small DM. Heptane as a less toxic option than hexane for the separation of vitamin E from food products using normal phase HPLC. RSC Adv. 2013;3(46):24063–24068. doi: 10.1039/c3ra44442b. DOI
Filser JG, Csanády GA, Dietz W, Kessler W, Kreuzer PE, Richter M, et al. Comparative estimation of the neurotoxic risks of n-hexane and N-heptane in rats and humans based on the formation of the metabolites 2,5-hexanedione and 2,5-heptanedione. In: Snyder R, Sipes IG, Jollow DJ, Monks TJ, Kocsis JJ, Kalf GF, et al., editors. Biological reactive intermediates V: basic mechanistic research in toxicology and human risk assessment. Boston, MA: Springer US; 1996. p. 411-27. PubMed
Jastrząb A, Jarocka-Karpowicz I, Skrzydlewska E. The origin and biomedical relevance of cannabigerol. Int J Mol Sci. 2022;23(14):7929. doi: 10.3390/ijms23147929. PubMed DOI PMC
Takeda S, Himeno T, Kakizoe K, Okazaki H, Okada T, Watanabe K, et al. Cannabidiolic acid-mediated selective down-regulation of c-fos in highly aggressive breast cancer MDA-MB-231 cells: possible involvement of its down-regulation in the abrogation of aggressiveness. J Nat Med. 2017;71(1):286–291. doi: 10.1007/s11418-016-1030-0. PubMed DOI
Formato M, Crescente G, Scognamiglio M, Fiorentino A, Pecoraro MT, Piccolella S, Catauro M, Pacifico S. (-)-Cannabidiolic Acid, a Still Overlooked Bioactive Compound: An Introductory Review and Preliminary Research. Molecules. 2020;25(11):2638. doi: 10.3390/molecules25112638. PubMed DOI PMC
Olejar KJ, Kinney CA. Evaluation of thermo-chemical conversion temperatures of cannabinoid acids in hemp (Cannabis sativa L.) biomass by pressurized liquid extraction. J Cannabis Res. 2021;3(1):40. PubMed PMC
Citti C, Pacchetti B, Vandelli MA, Forni F, Cannazza G. Analysis of cannabinoids in commercial hemp seed oil and decarboxylation kinetics studies of cannabidiolic acid (CBDA) J Pharm Biomed Anal. 2018;149:532–540. doi: 10.1016/j.jpba.2017.11.044. PubMed DOI
Zaharia LS, Trofine I, Vaireanu D-I, Dabija G. The influence of temperature and heating time on the decarboxylation of Δ9–THCA and CBDA in the cannabis inflorescences. UPB Sci Bull Ser B. 2020;82(3):73–84.
Pertwee RG. Handbook of cannabis: Oxford University Press, USA; 2014.
Andre CM, Hausman JF, Guerriero G. Cannabis sativa: The Plant of the Thousand and One Molecules. Front Plant Sci. 2016;4(7):19. PubMed PMC
ElSohly MA, Slade D. Chemical constituents of marijuana: the complex mixture of natural cannabinoids. Life Sci. 2005;78(5):539–548. doi: 10.1016/j.lfs.2005.09.011. PubMed DOI
Citti C, Russo F, Sgrò S, Gallo A, Zanotto A, Forni F, et al. Pitfalls in the analysis of phytocannabinoids in cannabis inflorescence. Anal Bioanal Chem. 2020;412(17):4009–4022. doi: 10.1007/s00216-020-02554-3. PubMed DOI
Guo TT, Zhang JC, Zhang H, Liu QC, Zhao Y, Hou YF, et al. Bioactive spirans and other constituents from the leaves of Cannabis sativa f. sativa. J Asian Nat Prod Res. 2017;19(8):793–802. PubMed
Duggan P. The Chemistry of Cannabis and Cannabinoids. Aust J Chem. 2021;74(6):369–387. doi: 10.1071/CH21006. DOI
Maayah ZH, Raposo PJF, Silver H, Mandal R, Ellis L, Alam AS, Takahara S, Ferdaoussi M, Mathewson KE, Eurich DT, Fouad K, Wishart DS, Dyck JRB. Metabolomic Fingerprint of Behavioral Changes in Response to Full-Spectrum Cannabis Extracts. Front Pharmacol. 2022;13:831052. PubMed PMC
Ferber SG, Namdar D, Hen-Shoval D, Eger G, Koltai H, Shoval G, et al. The “entourage effect″: terpenes coupled with cannabinoids for the treatment of mood disorders and anxiety disorders. Curr Neuropharmacol. 2020;18(2):87–96. doi: 10.2174/1570159X17666190903103923. PubMed DOI PMC
Heblinski M, Santiago M, Fletcher C, Stuart J, Connor M, McGregor IS, et al. Terpenoids commonly found in Cannabis sativa do not modulate the actions of phytocannabinoids or endocannabinoids on TRPA1 and TRPV1 channels. Cannabis Cannabinoid Res. 2020;5(4):305–317. doi: 10.1089/can.2019.0099. PubMed DOI PMC
Santiago M, Sachdev S, Arnold JC, McGregor IS, Connor M. Absence of entourage: terpenoids commonly found in Cannabis sativa do not modulate the functional activity of Δ(9)-THC at human CB(1) and CB(2) receptors. Cannabis Cannabinoid Res. 2019;4(3):165–176. doi: 10.1089/can.2019.0016. PubMed DOI PMC