Silicon- and Germanium-Functionalized Perylene Diimides: Synthesis, Optoelectronic Properties, and Their Application as Non-fullerene Acceptors in Organic Solar Cells

. 2023 Oct 13 ; 29 (57) : e202301337. [epub] 20230828

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37419861

Grantová podpora
CERIC-ERIC
P 33470-N Austrian Science Fund
WTZ CZ 04/2020 OeAD-GmbH
Maria Zambrano fellowship Spanish University Ministry
Maria Zambrano fellowship - NextGen-Eu European Union
project No. 8J20AT020 Ministry of Education, Youth and Sports of the Czech Republic

Organic solar cells have been continuously studied and developed through the last decades. A major step in their development was the introduction of fused-ring non-fullerene electron acceptors. Yet, beside their high efficiency, they suffer from complex synthesis and stability issues. Perylene-based non-fullerene acceptors, in contrast, can be prepared in only a few steps and display good photochemical and thermal stability. Herein, we introduce four monomeric perylene diimide acceptors obtained in a three-step synthesis. In these molecules, the semimetals silicon and germanium were added in the bay position, on one or both sides of the molecules, resulting in asymmetric and symmetric compounds with a red-shifted absorption compared to unsubstituted perylene diimide. Introducing two germanium atoms improved the crystallinity and charge carrier mobility in the blend with the conjugated polymer PM6. In addition, charge carrier separation is significantly influenced by the high crystallinity of this blend, as shown by transient absorption spectroscopy. As a result, the solar cells reached a power conversion efficiency of 5.38 %, which is one of the highest efficiencies of monomeric perylene diimide-based solar cells recorded to date.

Zobrazit více v PubMed

Global PV Potential Study can be found under https://globalsolaratlas.info/global-pv-potential-study 2022.

Chowdhury M. S., Rahman K. S., Chowdhury T., Nuthammachot N., Techato K., Akhtaruzzaman M., Tiong S. K., Sopian K., Amin N., Energy Strategy Rev. 2020, 27, 100431.

Kim M., Jeong J., Lu H., Lee T. K., Eickemeyer F. T., Liu Y., Choi I. W., Choi S. J., Jo Y., Kim H.-B., Mo S.-I., Kim Y.-K., Lee H., An N. G., Cho S., Tress W. R., Zakeeruddin S. M., Hagfeldt A., Kim J. Y., Grätzel M., Kim D. S., Science 2022, 375, 302; PubMed

Best Research-Cell Efficiency Chart can be found under http://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies-rev220630.pdf 2022.

Liu Q., Jiang Y., Jin K., Qin J., Xu J., Li W., Xiong J., Liu J., Xiao Z., Sun K., Yang S., Zhang X., Ding L., Sci. Bull. 2020, 65, 272. PubMed

Schweda B., Reinfelds M., Hofstadler P., Trimmel G., Rath T., ACS Appl. Energ. Mater. 2021, 4, 11899; PubMed PMC

Heng W., Weihua L., Bachagha K., J. Mater. Chem. A 2023, 11, 1039;

Luo D., Jang W., Babu D. D., Kim M. S., Wang D. H., Kyaw A. K. K., J. Mater. Chem. A 2022, 10, 3255;

Camaioni N., Carbonera C., Ciammaruchi L., Corso G., Mwaura J., Po R., Tinti F., Adv. Mater. 2023, 35, e2210146. PubMed

Cao J., Yang S., RSC Adv. 2022, 12, 6966. PubMed PMC

Xu X., Jing W., Meng H., Guo Y., Yu L., Li R., Peng Q., Adv. Mater. 2023, 35, e2208997. PubMed

Liu H., Li Y., Xu S., Zhou Y., Li Z., Adv. Funct. Mater. 2021, 31, 2106735.

Shen Q., He C., Li S., Zuo L., Shi M., Chen H., Acc. Mater. Res. 2022, 3, 644.

Gao K., Kan Y., Chen X., Liu F., Kan B., Nian L., Wan X., Chen Y., Peng X., Russell T. P., Cao Y., Jen A. K.-Y., Adv. Mater. 2020, 32, e1906129; PubMed

Piradi V., Yan F., Zhu X., Wong W.-Y., Mater. Chem. Front. 2021, 5, 7119.

Zhang M., Bai Y., Sun C., Xue L., Wang H., Zhang Z.-G., Sci. China Chem. 2022, 65, 462.

Roy R., Khan A., Chatterjee O., Bhunia S., Koner A. L., Organic Materials 2021, 3, 417;

Cheng J., Li B., Ren X., Liu F., Zhao H., Wang H., Wu Y., Chen W., Ba X., Dyes Pigm. 2019, 161, 221;

Singh R., Kim M., Lee J.-J., Ye T., Keivanidis P. E., Cho K., J. Mater. Chem. C 2020, 8, 1686;

Li C., Wonneberger H., Adv. Mater. 2012, 24, 613. PubMed

Liu Z., Wu Y., Zhang Q., Gao X., J. Mater. Chem. A 2016, 4, 17604.

Zhang L., Chen Z., Sun F., Wang Y., Bao H., Gao X., Liu Z., J. Electron. Mater. 2022, 51, 4224.

Szarko J. M., Guo J., Rolczynski B. S., Chen L. X., Nano Rev. 2011, 2, 7249. PubMed PMC

Tang C. W., Appl. Phys. Lett. 1986, 48, 183.

Yao J., Chen Q., Zhang C., Zhang Z.-G., Li Y., SusMat. 2022, 2, 243.

Muñoz-García A. B., Benesperi I., Boschloo G., Concepcion J. J., Delcamp J. H., Gibson E. A., Meyer G. J., Pavone M., Pettersson H., Hagfeldt A., Freitag M., Chem. Soc. Rev. 2021, 50, 12450; PubMed PMC

Cappel U. B., Karlsson M. H., Pschirer N. G., Eickemeyer F., Schöneboom J., Erk P., Boschloo G., Hagfeldt A., J. Phys. Chem. C 2009, 113, 14595;

Echeverry C. A., Cotta R., Insuasty A., Ortíz A., Martín N., Echegoyen L., Insuasty B., Dyes Pigm. 2018, 153, 182.

Wu T., Wang D., Lu Y., Zheng Z., Guo F., Ye T., Gao S., Zhang Y., ACS Appl. Energ. Mater. 2021, 4, 13657;

Luo Z., Wu F., Zhang T., Zeng X., Xiao Y., Liu T., Zhong C., Lu X., Zhu L., Yang S., Yang C., Angew. Chem. Int. Ed. 2019, 58, 8520; PubMed

Said A. A., Xie J., Zhang Q., Small 2019, 15, e1900854. PubMed

Nowak-Król A., Würthner F., Org. Chem. Front. 2019, 6, 1272.

Chen S., Meng D., Huang J., Liang N., Li Y., Liu F., Yan H., Wang Z., CCS Chem. 2021, 3, 78;

Ding K., Shan T., Xu J., Li M., Wang Y., Zhang Y., Xie Z., Ma Z., Liu F., Zhong H., Chem. Commun. 2020, 56, 11433. PubMed

Mahlmeister B., Renner R., Anhalt O., Stolte M., Würthner F., J. Mater. Chem. C 2022, 10, 2581; PubMed PMC

Li X., Wang H., Schneider J. A., Wei Z., Lai W.-Y., Huang W., Wudl F., Zheng Y., J. Mater. Chem. C 2017, 5, 2781.

Holman M. W., Liu R., Adams D. M., J. Am. Chem. Soc. 2003, 125, 12649. PubMed

Ma Z., Xiao C., Liu C., Meng D., Jiang W., Wang Z., Org. Lett. 2017, 19, 4331. PubMed

Brockway L. O., Jenkins H. O., J. Am. Chem. Soc. 1936, 58, 2036.

Iron M. A., Cohen R., Rybtchinski B., J. Phys. Chem. A 2011, 115, 2047. PubMed

Aksakal N. E., Chumakov Y., Yuksel F., J. Chem. Crystallogr. 2019, 49, 72.

Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., J. A. Montgomery  Jr. , Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Keith T., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas O., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J., Gaussian 16. Revision C.01, Gaussian, Inc, Wallingford, CT: 2019.

Gupta R. K., Dey A., Singh A., Iyer P. K., Sudhakar A. A., ACS Appl. Electron. Mater. 2019, 1, 1378;

Gupta R. K., Shankar Rao D. S., Prasad S. K., Achalkumar A. S., Chem. Eur. J. 2018, 24, 3566; PubMed

Chen L., Xia P., Du T., Deng Y., Xiao Y., Org. Lett. 2019, 21, 5529; PubMed

Yin Y., Song J., Guo F., Sun Y., Zhao L., Zhang Y., ACS Appl. Energ. Mater. 2018, 1, 6577.

Rosso C., Filippini G., Prato M., Eur. J. Org. Chem. 2021, 2021, 1193;

Huang C., Barlow S., Marder S. R., J. Org. Chem. 2011, 76, 2386. PubMed

Liu S., Int. J. Electrochem. Sci. 2019, 14, 2949.

Schweda B., Reinfelds M., Hofinger J., Bäumel G., Rath T., Kaschnitz P., Fischer R. C., Flock M., Amenitsch H., Scharber M. C., Trimmel G., Chem. Eur. J. 2022, 28, e202200276. PubMed PMC

Wang R., Zhang C., Li Q., Zhang Z., Wang X., Xiao M., J. Am. Chem. Soc. 2020, 142, 12751. PubMed

Liang S., Li S., Zhang Y., Li T., Zhou H., Jin F., Sheng C., Ni G., Yuan J., Ma W., Zhao H., Adv. Funct. Mater. 2021, 31, 2102764.

Kosco J., Gonzalez-Carrero S., Howells C. T., Fei T., Dong Y., Sougrat R., Harrison G. T., Firdaus Y., Sheelamanthula R., Purushothaman B., Moruzzi F., Xu W., Zhao L., Basu A., de Wolf S., Anthopoulos T. D., Durrant J. R., McCulloch I., Nat. Energy 2022, 7, 340;

Zeng Y., Li D., Wu H., Chen Z., Leng S., Hao T., Xiong S., Xue Q., Ma Z., Zhu H., Bao Q., Adv. Funct. Mater. 2022, 32, 2110743.

Shang Z., Zhou L., Sun C., Meng L., Lai W., Zhang J., Huang W., Li Y., Sci. China Chem. 2021, 64, 1031;

Zhou L., Ran G., Liu Y., Bo Z., Sun S., Zhang W., J. Photochem. Photobiol. A 2022, 11, 100129.

Marin-Beloqui J. M., Toolan D. T. W., Panjwani N. A., Limbu S., Kim J.-S., Clarke T. M., Adv. Energy Mater. 2021, 11, 2100539;

Moore G. J., Causa M., Martinez Hardigree J. F., Karuthedath S., Ramirez I., Jungbluth A., Laquai F., Riede M., Banerji N., J. Phys. Chem. Lett. 2020, 11, 5610. PubMed

Blessing R. H., Acta Crystallogr. Sect. A 1995, 51(1), 33; PubMed

Bruker APEX2 and SAINT, Bruker AXS Inc., Madison, Wisconsin: 2012;

Sheldrick G. M., Acta Crystallogr. Sect. A 2015, 71, 3;

Sheldrick G. M., Acta Crystallogr. Sect. A 2008, 64, 112; PubMed

Sheldrick G. M., Acta Crystallogr. Sect. A 1990, 46, 467;

Dolomanov O. V., Bourhis L. J., Gildea R. J., Howard J. A. K., Puschmann H., J. Appl. Crystallogr. 2009, 42, 339; PubMed PMC

Spek A. L., Acta Crystallogr. Sect. D 2009, 65, 148; PubMed

Spek A. L., J. Appl. Crystallogr. 2003, 36, 7;

Amenitsch H., Rappolt M., Kriechbaum M., Mio H., Laggner P., Bernstorff S., J. Synchrotron Radiat. 1998, 5, 506; PubMed

Burian M., Meisenbichler C., Naumenko D., Amenitsch H., J. Appl. Crystallogr. 2022, 55, 677; PubMed PMC

Cardona C. M., Li W., Kaifer A. E., Stockdale D., Bazan G. C., Adv. Mater. 2011, 23, 2367; PubMed

Organic Redox Systems. Synthesis, Properties, and Applications (Ed.: Nishinaga T.), Wiley, Hoboken: 2016.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...