Silicon- and Germanium-Functionalized Perylene Diimides: Synthesis, Optoelectronic Properties, and Their Application as Non-fullerene Acceptors in Organic Solar Cells
Status PubMed-not-MEDLINE Language English Country Germany Media print-electronic
Document type Journal Article
Grant support
CERIC-ERIC
P 33470-N
Austrian Science Fund
WTZ CZ 04/2020
OeAD-GmbH
Maria Zambrano fellowship
Spanish University Ministry
Maria Zambrano fellowship - NextGen-Eu
European Union
project No. 8J20AT020
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
37419861
PubMed Central
PMC10946824
DOI
10.1002/chem.202301337
Knihovny.cz E-resources
- Keywords
- donor-acceptor systems, group 14 elements, organic photovoltaics, organometallics, perylene diimides,
- Publication type
- Journal Article MeSH
Organic solar cells have been continuously studied and developed through the last decades. A major step in their development was the introduction of fused-ring non-fullerene electron acceptors. Yet, beside their high efficiency, they suffer from complex synthesis and stability issues. Perylene-based non-fullerene acceptors, in contrast, can be prepared in only a few steps and display good photochemical and thermal stability. Herein, we introduce four monomeric perylene diimide acceptors obtained in a three-step synthesis. In these molecules, the semimetals silicon and germanium were added in the bay position, on one or both sides of the molecules, resulting in asymmetric and symmetric compounds with a red-shifted absorption compared to unsubstituted perylene diimide. Introducing two germanium atoms improved the crystallinity and charge carrier mobility in the blend with the conjugated polymer PM6. In addition, charge carrier separation is significantly influenced by the high crystallinity of this blend, as shown by transient absorption spectroscopy. As a result, the solar cells reached a power conversion efficiency of 5.38 %, which is one of the highest efficiencies of monomeric perylene diimide-based solar cells recorded to date.
See more in PubMed
Global PV Potential Study can be found under https://globalsolaratlas.info/global-pv-potential-study 2022.
Chowdhury M. S., Rahman K. S., Chowdhury T., Nuthammachot N., Techato K., Akhtaruzzaman M., Tiong S. K., Sopian K., Amin N., Energy Strategy Rev. 2020, 27, 100431.
Kim M., Jeong J., Lu H., Lee T. K., Eickemeyer F. T., Liu Y., Choi I. W., Choi S. J., Jo Y., Kim H.-B., Mo S.-I., Kim Y.-K., Lee H., An N. G., Cho S., Tress W. R., Zakeeruddin S. M., Hagfeldt A., Kim J. Y., Grätzel M., Kim D. S., Science 2022, 375, 302; PubMed
Best Research-Cell Efficiency Chart can be found under http://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies-rev220630.pdf 2022.
Liu Q., Jiang Y., Jin K., Qin J., Xu J., Li W., Xiong J., Liu J., Xiao Z., Sun K., Yang S., Zhang X., Ding L., Sci. Bull. 2020, 65, 272. PubMed
Schweda B., Reinfelds M., Hofstadler P., Trimmel G., Rath T., ACS Appl. Energ. Mater. 2021, 4, 11899; PubMed PMC
Heng W., Weihua L., Bachagha K., J. Mater. Chem. A 2023, 11, 1039;
Luo D., Jang W., Babu D. D., Kim M. S., Wang D. H., Kyaw A. K. K., J. Mater. Chem. A 2022, 10, 3255;
Camaioni N., Carbonera C., Ciammaruchi L., Corso G., Mwaura J., Po R., Tinti F., Adv. Mater. 2023, 35, e2210146. PubMed
Cao J., Yang S., RSC Adv. 2022, 12, 6966. PubMed PMC
Xu X., Jing W., Meng H., Guo Y., Yu L., Li R., Peng Q., Adv. Mater. 2023, 35, e2208997. PubMed
Liu H., Li Y., Xu S., Zhou Y., Li Z., Adv. Funct. Mater. 2021, 31, 2106735.
Shen Q., He C., Li S., Zuo L., Shi M., Chen H., Acc. Mater. Res. 2022, 3, 644.
Gao K., Kan Y., Chen X., Liu F., Kan B., Nian L., Wan X., Chen Y., Peng X., Russell T. P., Cao Y., Jen A. K.-Y., Adv. Mater. 2020, 32, e1906129; PubMed
Piradi V., Yan F., Zhu X., Wong W.-Y., Mater. Chem. Front. 2021, 5, 7119.
Zhang M., Bai Y., Sun C., Xue L., Wang H., Zhang Z.-G., Sci. China Chem. 2022, 65, 462.
Roy R., Khan A., Chatterjee O., Bhunia S., Koner A. L., Organic Materials 2021, 3, 417;
Cheng J., Li B., Ren X., Liu F., Zhao H., Wang H., Wu Y., Chen W., Ba X., Dyes Pigm. 2019, 161, 221;
Singh R., Kim M., Lee J.-J., Ye T., Keivanidis P. E., Cho K., J. Mater. Chem. C 2020, 8, 1686;
Li C., Wonneberger H., Adv. Mater. 2012, 24, 613. PubMed
Liu Z., Wu Y., Zhang Q., Gao X., J. Mater. Chem. A 2016, 4, 17604.
Zhang L., Chen Z., Sun F., Wang Y., Bao H., Gao X., Liu Z., J. Electron. Mater. 2022, 51, 4224.
Szarko J. M., Guo J., Rolczynski B. S., Chen L. X., Nano Rev. 2011, 2, 7249. PubMed PMC
Tang C. W., Appl. Phys. Lett. 1986, 48, 183.
Yao J., Chen Q., Zhang C., Zhang Z.-G., Li Y., SusMat. 2022, 2, 243.
Muñoz-García A. B., Benesperi I., Boschloo G., Concepcion J. J., Delcamp J. H., Gibson E. A., Meyer G. J., Pavone M., Pettersson H., Hagfeldt A., Freitag M., Chem. Soc. Rev. 2021, 50, 12450; PubMed PMC
Cappel U. B., Karlsson M. H., Pschirer N. G., Eickemeyer F., Schöneboom J., Erk P., Boschloo G., Hagfeldt A., J. Phys. Chem. C 2009, 113, 14595;
Echeverry C. A., Cotta R., Insuasty A., Ortíz A., Martín N., Echegoyen L., Insuasty B., Dyes Pigm. 2018, 153, 182.
Wu T., Wang D., Lu Y., Zheng Z., Guo F., Ye T., Gao S., Zhang Y., ACS Appl. Energ. Mater. 2021, 4, 13657;
Luo Z., Wu F., Zhang T., Zeng X., Xiao Y., Liu T., Zhong C., Lu X., Zhu L., Yang S., Yang C., Angew. Chem. Int. Ed. 2019, 58, 8520; PubMed
Said A. A., Xie J., Zhang Q., Small 2019, 15, e1900854. PubMed
Nowak-Król A., Würthner F., Org. Chem. Front. 2019, 6, 1272.
Chen S., Meng D., Huang J., Liang N., Li Y., Liu F., Yan H., Wang Z., CCS Chem. 2021, 3, 78;
Ding K., Shan T., Xu J., Li M., Wang Y., Zhang Y., Xie Z., Ma Z., Liu F., Zhong H., Chem. Commun. 2020, 56, 11433. PubMed
Mahlmeister B., Renner R., Anhalt O., Stolte M., Würthner F., J. Mater. Chem. C 2022, 10, 2581; PubMed PMC
Li X., Wang H., Schneider J. A., Wei Z., Lai W.-Y., Huang W., Wudl F., Zheng Y., J. Mater. Chem. C 2017, 5, 2781.
Holman M. W., Liu R., Adams D. M., J. Am. Chem. Soc. 2003, 125, 12649. PubMed
Ma Z., Xiao C., Liu C., Meng D., Jiang W., Wang Z., Org. Lett. 2017, 19, 4331. PubMed
Brockway L. O., Jenkins H. O., J. Am. Chem. Soc. 1936, 58, 2036.
Iron M. A., Cohen R., Rybtchinski B., J. Phys. Chem. A 2011, 115, 2047. PubMed
Aksakal N. E., Chumakov Y., Yuksel F., J. Chem. Crystallogr. 2019, 49, 72.
Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., J. A. Montgomery Jr. , Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Keith T., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas O., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J., Gaussian 16. Revision C.01, Gaussian, Inc, Wallingford, CT: 2019.
Gupta R. K., Dey A., Singh A., Iyer P. K., Sudhakar A. A., ACS Appl. Electron. Mater. 2019, 1, 1378;
Gupta R. K., Shankar Rao D. S., Prasad S. K., Achalkumar A. S., Chem. Eur. J. 2018, 24, 3566; PubMed
Chen L., Xia P., Du T., Deng Y., Xiao Y., Org. Lett. 2019, 21, 5529; PubMed
Yin Y., Song J., Guo F., Sun Y., Zhao L., Zhang Y., ACS Appl. Energ. Mater. 2018, 1, 6577.
Rosso C., Filippini G., Prato M., Eur. J. Org. Chem. 2021, 2021, 1193;
Huang C., Barlow S., Marder S. R., J. Org. Chem. 2011, 76, 2386. PubMed
Liu S., Int. J. Electrochem. Sci. 2019, 14, 2949.
Schweda B., Reinfelds M., Hofinger J., Bäumel G., Rath T., Kaschnitz P., Fischer R. C., Flock M., Amenitsch H., Scharber M. C., Trimmel G., Chem. Eur. J. 2022, 28, e202200276. PubMed PMC
Wang R., Zhang C., Li Q., Zhang Z., Wang X., Xiao M., J. Am. Chem. Soc. 2020, 142, 12751. PubMed
Liang S., Li S., Zhang Y., Li T., Zhou H., Jin F., Sheng C., Ni G., Yuan J., Ma W., Zhao H., Adv. Funct. Mater. 2021, 31, 2102764.
Kosco J., Gonzalez-Carrero S., Howells C. T., Fei T., Dong Y., Sougrat R., Harrison G. T., Firdaus Y., Sheelamanthula R., Purushothaman B., Moruzzi F., Xu W., Zhao L., Basu A., de Wolf S., Anthopoulos T. D., Durrant J. R., McCulloch I., Nat. Energy 2022, 7, 340;
Zeng Y., Li D., Wu H., Chen Z., Leng S., Hao T., Xiong S., Xue Q., Ma Z., Zhu H., Bao Q., Adv. Funct. Mater. 2022, 32, 2110743.
Shang Z., Zhou L., Sun C., Meng L., Lai W., Zhang J., Huang W., Li Y., Sci. China Chem. 2021, 64, 1031;
Zhou L., Ran G., Liu Y., Bo Z., Sun S., Zhang W., J. Photochem. Photobiol. A 2022, 11, 100129.
Marin-Beloqui J. M., Toolan D. T. W., Panjwani N. A., Limbu S., Kim J.-S., Clarke T. M., Adv. Energy Mater. 2021, 11, 2100539;
Moore G. J., Causa M., Martinez Hardigree J. F., Karuthedath S., Ramirez I., Jungbluth A., Laquai F., Riede M., Banerji N., J. Phys. Chem. Lett. 2020, 11, 5610. PubMed
Blessing R. H., Acta Crystallogr. Sect. A 1995, 51(1), 33; PubMed
Bruker APEX2 and SAINT, Bruker AXS Inc., Madison, Wisconsin: 2012;
Sheldrick G. M., Acta Crystallogr. Sect. A 2015, 71, 3;
Sheldrick G. M., Acta Crystallogr. Sect. A 2008, 64, 112; PubMed
Sheldrick G. M., Acta Crystallogr. Sect. A 1990, 46, 467;
Dolomanov O. V., Bourhis L. J., Gildea R. J., Howard J. A. K., Puschmann H., J. Appl. Crystallogr. 2009, 42, 339; PubMed PMC
Spek A. L., Acta Crystallogr. Sect. D 2009, 65, 148; PubMed
Spek A. L., J. Appl. Crystallogr. 2003, 36, 7;
Amenitsch H., Rappolt M., Kriechbaum M., Mio H., Laggner P., Bernstorff S., J. Synchrotron Radiat. 1998, 5, 506; PubMed
Burian M., Meisenbichler C., Naumenko D., Amenitsch H., J. Appl. Crystallogr. 2022, 55, 677; PubMed PMC
Cardona C. M., Li W., Kaifer A. E., Stockdale D., Bazan G. C., Adv. Mater. 2011, 23, 2367; PubMed
Organic Redox Systems. Synthesis, Properties, and Applications (Ed.: Nishinaga T.), Wiley, Hoboken: 2016.