Fidelity Assessment of Motion Platform Cueing: Comparison of Driving Behavior under Various Motion Levels
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
37420594
PubMed Central
PMC10300727
DOI
10.3390/s23125428
PII: s23125428
Knihovny.cz E-zdroje
- Klíčová slova
- Xsens MTi-G sensor, driving simulator, driving simulator experiment, motion cues fidelity, motion platform, real car experiment, virtual reality,
- Publikační typ
- časopisecké články MeSH
The present paper focuses on vehicle simulator fidelity, particularly the effect of motion cues intensity on driver performance. The 6-DOF motion platform was used in the experiment; however, we mainly focused on one characteristic of driving behavior. The braking performance of 24 participants in a car simulator was recorded and analyzed. The experiment scenario was composed of acceleration to 120 km/h followed by smooth deceleration to a stop line with prior warning signs at distances of 240, 160, and 80 m to the finish line. To assess the effect of the motion cues, each driver performed the run three times with different motion platform settings-no motion, moderate motion, and maximal possible response and range. The results from the driving simulator were compared with data acquired in an equivalent driving scenario performed in real conditions on a polygon track and taken as reference data. The driving simulator and real car accelerations were recorded using the Xsens MTi-G sensor. The outcomes confirmed the hypothesis that driving with a higher level of motion cues in the driving simulator brought more natural braking behavior of the experimental drivers, better correlated with the real car driving test data, although exceptions were found.
Zobrazit více v PubMed
Nikitenko A. Software and Hardware Simulators for Train Drivers Training: Overview of Possibilities and Effects of Application. Prz Elektrotechniczny. 2020;96:198–201. doi: 10.15199/48.2020.11.42. DOI
Matowicki M., Pribyl O., Bouchner P. Pragmatic overview of surrounding traffic implementation into driving simulator; Proceedings of the ELEKTRO 2016-11th International Conference Proceedings; Strbske Pleso, Slovakia. 16–18 May 2016; pp. 423–428. DOI
Bouchner P. Interactive Driving Simulators—History, Design and their Utilization in area of HMI Research. Int. J. Syst. Appl. Eng. Dev. 2016;10:179–188.
Yeo D., Kim G., Kim S. Toward Immersive Self-Driving Simulations: Reports from a User Study across Six Platforms; Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems; Honolulu, HI, USA. 25–30 April 2020; pp. 1–12. DOI
Borojeni S.S., Boll S.C., Heuten W., Bülthoff H.H., Chuang L. Feel the Movement: Real motion influences responses to Take-over requests in highly automated vehicles; Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems; Montreal, QC, Canada. 21–26 April 2018; pp. 1–13. DOI
El Hamdani S., Benamar N. A comprehensive study of intelligent transportation system architectures for road congestion avoidance. In: Sabir E., García Armada A., Ghogho M., Debbah M., editors. Ubiquitous Networking. Springer; Cham, Switzerland: 2017.
El Hamdani S., Loudari S., Ouaissa M., Ouaissa M., Benamar N. Computational Intelligence in Recent Communication Networks, EAI/Spring. EAI/Springer Innovations in Communication and Computing. Springer; Cham, Switzerland: 2021. Deep Reinforcement Learning Modeling of a V2V Communication-Based Bike Avoidance Protocol for Increased Vehicular Flow.
El Hamdani S., Loudari S., Novotny S., Bouchner P., Benamar N. A Markov Decision Process Model for a Reinforcement Learning-based Autonomous Pedestrian Crossing Protocol; Proceedings of the 2021 3rd IEEE Middle East and North Africa COMMunications Conference (MENACOMM); Agadir, Morocco. 3–5 December 2022; pp. 147–151. DOI
El Hamdani S., Benamar N. Autonomous Traffic Management: Open Issues and New Directions; Proceedings of the 2018 International Conference on Selected Topics in Mobile and Wireless Networking (MoWNeT); Tangier, Morocco. 20–22 June 2018; pp. 1–5. DOI
Wynne R.A., Beanland V., Salmon P.M. Systematic review of driving simulator validation studies. Saf. Sci. 2019;117:138–151. doi: 10.1016/j.ssci.2019.04.004. DOI
Casas-Yrurzum S., Portales-Ricart C., Morillo-Tena P., Cruz-Neira C. On the Objective Evaluation of Motion Cueing in Vehicle Simulations. IEEE Trans. Intell. Transp. Syst. 2021;22:3001–3013. doi: 10.1109/TITS.2020.2978498. DOI
Qazani M.R.C., Asadi H., Khoo S., Nahavandi S. A Linear Time-Varying Model Predictive Control-Based Motion Cueing Algorithm for Hexapod Simulation-Based Motion Platform. IEEE Trans. Syst. Man, Cybern. Syst. 2021;51:6096–6110. doi: 10.1109/TSMC.2019.2958062. DOI
Qazani M.R.C., Asadi H., Zhang L., Tabarsinezhad F., Mohamed S., Lim C.P., Nahavandi S. A New Prepositioning Technique of a Motion Simulator Platform Using Nonlinear Model Predictive Control and Recurrent Neural Network. IEEE Trans. Intell. Transp. Syst. 2022;23:23268–23277. doi: 10.1109/TITS.2022.3195964. DOI
Riera J.V., Casas S., Fernández M., Alonso F., Useche S.A. Development of a Hybrid Method to Generate Gravito-Inertial Cues for Motion Platforms in Highly Immersive Environments. Sensors. 2021;21:8079. doi: 10.3390/s21238079. PubMed DOI PMC
Kharrazi S., Augusto B., Fröjd N. Vehicle dynamics testing in motion based driving simulators. Veh. Syst. Dyn. 2020;58:92–107. doi: 10.1080/00423114.2019.1566555. DOI
Keshavarz B., Ramkhalawansingh R., Haycock B., Shahab S., Campos J. Comparing simulator sickness in younger and older adults during simulated driving under different multisensory conditions. Transp. Res. Part F Traffic Psychol. Behav. 2018;54:47–62. doi: 10.1016/j.trf.2018.01.007. DOI
Kim J., Lee S.-M., Son H., Park T. Effects of unlimited angular motion cue and cue discrepancy on simulator sickness. Expert Syst. Appl. 2022;213:119196. doi: 10.1016/j.eswa.2022.119196. DOI
Berthoz A., Bles W., Bulthoff H.H., Gracio B.J.C., Feenstra P., Filliard N., Huhne R., Kemeny A., Mayrhofer M., Mulder M., et al. Motion Scaling for High-Performance Driving Simulators. IEEE Trans. Hum.-Mach. Syst. 2013;43:265–276. doi: 10.1109/TSMC.2013.2242885. DOI
Lakerveld P., Damveld H., Pool D., van der El K., van Paassen M., Mulder M. The Effects of Yaw and Sway Motion Cues in Curve Driving Simulation. IFAC-PapersOnLine. 2016;49:500–505. doi: 10.1016/j.ifacol.2016.10.640. DOI
Salisbury I.G., Limebeer D.J.N. Motion cueing in high-performance vehicle simulators. Veh. Syst. Dyn. 2017;55:775–801. doi: 10.1080/00423114.2017.1280172. DOI
Cleij D., Venrooij J., Pretto P., Pool D.M., Mulder M., Bulthoff H.H. Continuous Subjective Rating of Perceived Motion Incongruence During Driving Simulation. IEEE Trans. Hum.-Mach. Syst. 2018;48:17–29. doi: 10.1109/THMS.2017.2717884. DOI
El Hamdani S., Bouchner P., Kunclova T., Lehet D. The Impact of Physical Motion Cues on Driver Braking Performance: A Clinical Study Using Driving Simulator and Eye Tracker. Sensors. 2023;23:42. doi: 10.3390/s23010042. PubMed DOI PMC
Bruenger-Koch M. Motion Parameter Tuning and Evaluation for the DLR Automotive Simulator; Proceedings of the Driving Simulator Conference; Orlando, FL, USA. 30 November–2 December 2005; pp. 262–270.
Tateyama Y., Mori Y., Yamamoto K., Ogi T., Nishimura H., Kitamura N., Yashiro H. Car Driving Behaviour Observation Using an Immersive Car Driving Simulator; Proceedings of the 2010 International Conference on P2P, Parallel, Grid, Cloud and Internet Computing; Fukuoka, Japan. 4–6 November 2010; pp. 411–414. DOI
Di Loreto C., Chardonnet J., Mackenzie J., Dutchke J., van den Berg A., Forrest M., Merienne F., Sandoz B. Real car versus driving simulator comparison of head dynamics in emergency braking events; Proceedings of the Driving Simulation Conference & Exhibition; Strasbourg, France. 4–6 September 2019.
Xsens MTi User Manual MTi 10-Series and MTi 100-Series 5th Generation. 2020. [(accessed on 1 April 2023)]. Doc MT0605PB, Revision 2020A. Available online: www.xsens.com.
Goedicke D., Li J., Evers V., Ju W. VR-OOM; Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems; Montreal, QC, Canada. 21–26 April 2018; pp. 1–11. DOI
Ligocki A., Jelinek A., Zalud L. Brno urban dataset: Winter extension. Data Brief. 2022;40:107667. doi: 10.1016/j.dib.2021.107667. PubMed DOI PMC
Dols J.F., Girbés-Juan V., Luna Á., Catalán J. Data Acquisition System for the Characterization of Biomechanical and Ergonomic Thresholds in Driving Vehicles. Sustainability. 2020;12:7013. doi: 10.3390/su12177013. DOI
Brogle C., Zhang C., Lim K.L., Braunl T. Hardware-in-the-Loop Autonomous Driving Simulation Without Real-Time Constraints. IEEE Trans. Intell. Veh. 2019;4:375–384. doi: 10.1109/TIV.2019.2919457. DOI
Vulpi F., Marani R., Petitti A., Reina G., Milella A. An RGB-D multi-view perspective for autonomous agricultural robots. Comput. Electron. Agric. 2022;202:107419. doi: 10.1016/j.compag.2022.107419. DOI
Zhai Y., Zhang S. Two-Wheeled Inverted Pendulum (TWIP) Robot Localization. Sensors. 2022;22:4778. doi: 10.3390/s22134778. PubMed DOI PMC
Du S., Lauterbach H.A., Li X., Demisse G.G., Borrmann D., Nüchter A. Curvefusion—A Method for Combining Estimated Trajectories with Applications to SLAM and Time-Calibration. Sensors. 2020;20:6918. doi: 10.3390/s20236918. PubMed DOI PMC
Wang Z., Xing L., Xiong Z., Ding Y., Sun Y., Shi C. An Improved Pedestrian Navigation Method Based on the Combination of Indoor Map Assistance and Adaptive Particle Filter. Remote Sens. 2022;14:6282. doi: 10.3390/rs14246282. DOI
Brull A., Zubizarreta A., Cabanes I., Rodriguez-Larrad A. Sensorized Tip for Monitoring People with Multiple Sclerosis that require Assistive Devices for Walking. Sensors. 2020;20:4329. doi: 10.3390/s20154329. PubMed DOI PMC
Shen J., Su Y., Liang Q., Zhu X. Calculation and Identification of the Aerodynamic Parameters for Small-Scaled Fixed-Wing UAVs. Sensors. 2018;18:206. doi: 10.3390/s18010206. PubMed DOI PMC
Bouchner P., Novotny S. Development of advanced driving simulator: Steering wheel and brake pedal feedback; Proceedings of the 2nd International Conference on Circuits, Systems, Control, Signals (CSCS’11); Prague, Czech Republic. 26–28 September 2011; pp. 170–174.
Bouchner P., Novotný S. Car dynamics model—Design for interactive driving simulation use; Proceedings of the 2nd International Conference on Applied Informatics and Computing Theory; Prague, Czech Republic. 26–28 September 2011; pp. 285–289.
Pragolet Your Real Simulator. 2022. [(accessed on 4 May 2023)]. Available online: http://www.pragolet.cz.
Xsens Technologies B.V. MTi-G User Manual and Technical Documentation. [(accessed on 6 June 2023)]. pp. 1–77. Doc MT0137P, Revision G. Available online: https://projects.asl.ethz.ch/datasets/lib/exe/fetch.php?media=hardware:tiltinglaser:mti-g_user_manual_and_technical_documentation.pdf.
Wood J., Donnell E.T. Stopping Sight Distance and Available Sight Distance: New Model and Reliability Analysis Comparison. Transp. Res. Rec. J. Transp. Res. Board. 2017;2638:1–9. doi: 10.3141/2638-01. DOI
Kudarauskas N. Analysis of Emergency Braking of a Vehicle. Transport. 2007;22:154–159. doi: 10.3846/16484142.2007.9638118. DOI