An update on the seizures beget seizures theory
Language English Country United States Media print-electronic
Document type Journal Article
Grant support
NU21-08-00533
Agentura Pro Zdravotnický Výzkum České Republiky
NU21-04-00601
Agentura Pro Zdravotnický Výzkum České Republiky
20-25298S
Grantová Agentura České Republiky
21-17564S
Grantová Agentura České Republiky
EU - Next Generation EU: LX22NPO5107
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
37466948
DOI
10.1111/epi.17721
Knihovny.cz E-resources
- Keywords
- disease progression, epilepsy, epileptogenesis, kindling, seizure cluster, seizures,
- MeSH
- Epilepsy * MeSH
- Humans MeSH
- Brain MeSH
- Neurons MeSH
- Disease Progression MeSH
- Seizures * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Seizures beget seizures is a longstanding theory that proposed that seizure activity can impact the structural and functional properties of the brain circuits in ways that contribute to epilepsy progression and the future occurrence of seizures. Originally proposed by Gowers, this theory continues to be quoted in the pathophysiology of epilepsy. We critically review the existing data and observations on the consequences of recurrent seizures on brain networks and highlight a range of factors that speak for and against the theory. The existing literature demonstrates clearly that ictal activity, especially if recurrent, induces molecular, structural, and functional changes including cell loss, connectivity reorganization, changes in neuronal behavior, and metabolic alterations. These changes have the potential to modify the seizure threshold, contribute to disease progression, and recruit wider areas of the epileptic network into epileptic activity. Repeated seizure activity may, thus, act as a pathological positive-feedback mechanism that increases seizure likelihood. On the other hand, the time course of self-limited epilepsies and the presence of seizure remission in two thirds of epilepsy cases and various chronic epilepsy models oppose the theory. Experimental work showed that seizures could induce neural changes that increase the seizure threshold and decrease the risk of a subsequent seizure. Due to the complex nature of epilepsies, it is wrong to consider only seizures as the key factor responsible for disease progression. Epilepsy worsening can be attributed to the various forms of interictal epileptiform activity or underlying disease mechanisms. Although seizure activity can negatively impact brain structure and function, the "seizures beget seizures" theory should not be used dogmatically but with extreme caution.
Department of Epileptology University Hospital Bonn Bonn Germany
Department of Physiology 2nd Faculty of Medicine Charles University Prague Czech Republic
Faculty of Medical Sciences Newcastle University Newcastle upon Tyne UK
See more in PubMed
Gowers WR, Schlesinger EB. Epilepsy and other chronic convulsive diseases: their causes, symptoms & treatment. New York: William Wood & Company; 1885.
Obituary. Lancet. 1915;185:1055-1057. https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(01)65644-7/fulltext
Bengzon J, Kokaia Z, Elmer E, Nanobashvili A, Kokaia M, Lindvall O. Apoptosis and proliferation of dentate gyrus neurons after single and intermittent limbic seizures. PNAS. 1997;94:10432-10437.
Holmes GL. Cognitive impairment in epilepsy: the role of network abnormalities. Epileptic Disord. 2015;17:101-116.
Lin H, Holmes GL, Kubie JL, Muller RU. Recurrent seizures induce a reversible impairment in a spatial hidden goal task. Hippocampus. 2009;19:817-827.
Morimoto K, Fahnestock M, Racine RJ. Kindling and status epilepticus models of epilepsy: rewiring the brain. Prog Neurobiol. 2004;73:1-60.
Goddard GV. Development of epileptic seizures through brain stimulation at low intensity. Nature. 1967;214:1020-1021.
McNamara JO, Byrne MC, Dasheiff RM, Fitz JG. The kindling model of epilepsy: a review. Prog Neurobiol. 1980;15:139-159.
Racine RJ. Modification of seizure activity by electrical stimulation: cortical areas. Electroencephalogr Clin Neurophysiol. 1975;38:1-12.
Cela E, McFarlan AR, Chung AJ, Wang T, Chierzi S, Murai KK, et al. An optogenetic kindling model of neocortical epilepsy. Sci Rep. 2019;9:5236.
Ryu B, Nagappan S, Santos-Valencia F, Lee P, Rodriguez E, Lackie M, et al. Chronic loss of inhibition in piriform cortex following brief, daily optogenetic stimulation. Cell Rep. 2021;35:109001.
Blauwblomme T, Jiruska P, Huberfeld G. Mechanisms of ictogenesis. Modern concepts of focal epileptic networks. Amsterdam: Elsevier; 2014. p. 155-185.
Morimoto K, Katayama K, Inoue K, Sato K. Effects of competitive and noncompetitive NMDA receptor antagonists on kindling and LTP. Pharmacol Biochem Behav. 1991;40:893-899.
Sutula T, Koch J, Golarai G, Watanabe Y, McNamara JO. NMDA receptor dependence of kindling and mossy fiber sprouting: evidence that the NMDA receptor regulates patterning of hippocampal circuits in the adult brain. J Neurosci. 1996;16:7398-7406.
Lado FA, Moshe SL. How do seizures stop? Epilepsia. 2008;49:1651-1664.
Sutula T, Cascino G, Cavazos J, Parada I, Ramirez L. Mossy fiber synaptic reorganization in the epileptic human temporal lobe. Ann Neurol. 1989;26:321-330.
Pitkanen A, Engel J Jr. Past and present definitions of epileptogenesis and its biomarkers. Neurotherapeutics. 2014;11:231-241.
Bertram E. The relevance of kindling for human epilepsy. Epilepsia. 2007;48(Suppl 2):65-74.
Dudek FE, Staley KJ. The time course of acquired epilepsy: implications for therapeutic intervention to suppress epileptogenesis. Neurosci Lett. 2011;497:240-246.
Pitkanen A, Lukasiuk K, Dudek FE, Staley KJ. Epileptogenesis. Cold Spring Harb Perspect Med. 2015;5(10):a022822.
Williams PA, Hellier JL, White AM, Staley KJ, Dudek FE. Development of spontaneous seizures after experimental status epilepticus: implications for understanding epileptogenesis. Epilepsia. 2007;48(Suppl 5):157-163.
Williams PA, White AM, Clark S, Ferraro DJ, Swiercz W, Staley KJ, et al. Development of spontaneous recurrent seizures after kainate-induced status epilepticus. J Neurosci. 2009;29:2103-2112.
Blume WT. The progression of epilepsy. Epilepsia. 2006;47(Suppl 1):71-78.
Englot DJ, Hinkley LB, Kort NS, Imber BS, Mizuiri D, Honma SM, et al. Global and regional functional connectivity maps of neural oscillations in focal epilepsy. Brain. 2015;138:2249-2262.
Zuberi SM, Wirrell E, Yozawitz E, Wilmshurst JM, Specchio N, Riney K, et al. ILAE classification and definition of epilepsy syndromes with onset in neonates and infants: position statement by the ILAE Task Force on Nosology and Definitions. Epilepsia. 2022;63:1349-1397.
Kubova H, Jiruska P, Komarek V. Anti-convulsant agents: cortisone and adrenocorticotropic hormone (ACTH). In: Riederer P, Laux G, Mulsant B, Le W, Nagatsu T, editors. NeuroPsychopharmacotherapy. Cham: Springer International Publishing; 2020. p. 1-15.
Curatolo P, Seri S, Verdecchia M, Bombardieri R. Infantile spasms in tuberous sclerosis complex. Brain Dev. 2001;23:502-507.
Jozwiak S, Kotulska K, Domanska-Pakiela D, Lojszczyk B, Syczewska M, Chmielewski D, et al. Antiepileptic treatment before the onset of seizures reduces epilepsy severity and risk of mental retardation in infants with tuberous sclerosis complex. Eur J Paediatr Neurol. 2011;15:424-431.
Kotulska K, Kwiatkowski DJ, Curatolo P, Weschke B, Riney K, Jansen F, et al. Prevention of epilepsy in infants with tuberous sclerosis complex in the EPISTOP trial. Ann Neurol. 2021;89:304-314.
Bender AC, Morse RP, Scott RC, Holmes GL, Lenck-Santini PP. SCN1A mutations in Dravet syndrome: impact of interneuron dysfunction on neural networks and cognitive outcome. Epilepsy Behav. 2012;23:177-186.
Sakkaki S, Barriere S, Bender AC, Scott RC, Lenck-Santini PP. Focal dorsal hippocampal Nav1.1 knock down alters place cell temporal coordination and spatial behavior. Cereb Cortex. 2020;30(30):5049-5066.
Salgueiro-Pereira AR, Duprat F, Pousinha PA, Loucif A, Douchamps V, Regondi C, et al. A two-hit story: seizures and genetic mutation interaction sets phenotype severity in SCN1A epilepsies. Neurobiol Dis. 2019;125:31-44.
Blumenfeld H, Klein JP, Schridde U, Vestal M, Rice T, Khera DS, et al. Early treatment suppresses the development of spike-wave epilepsy in a rat model. Epilepsia. 2008;49:400-409.
Guerrini R, Conti V, Mantegazza M, Balestrini S, Galanopoulou AS, Benfenati F. Developmental and epileptic encephalopathies: from genetic heterogeneity to phenotypic continuum. Physiol Rev. 2023;103:433-513.
Andoh M, Ikegaya Y, Koyama R. Synaptic pruning by microglia in epilepsy. J Clin Med. 2019;8(12):2170.
Danzer SC, Crooks KR, Lo DC, McNamara JO. Increased expression of brain-derived neurotrophic factor induces formation of basal dendrites and axonal branching in dentate granule cells in hippocampal explant cultures. J Neurosci. 2002;22:9754-9763.
Chu Y, Jin X, Parada I, Pesic A, Stevens B, Barres B, et al. Enhanced synaptic connectivity and epilepsy in C1q knockout mice. PNAS. 2010;107:7975-7980.
Grigonis AM, Murphy EH. The effects of epileptic cortical activity on the development of callosal projections. Brain Res Dev Brain Res. 1994;77:251-255.
Shen Y, Gong Y, Ruan Y, Chen Z, Xu C. Secondary epileptogenesis: common to see, but possible to treat? Front Neurol. 2021;12:747372.
Morrell F. Secondary epileptogenic lesions. Epilepsia. 1960;1:538-560.
Morrell F. Experimental focal epilepsy in animals. Arch Neurol. 1959;1:141-147.
Jiruska P, Alvarado-Rojas C, Schevon CA, Staba R, Stacey W, Wendling F, et al. Update on the mechanisms and roles of high-frequency oscillations in seizures and epileptic disorders. Epilepsia. 2017;58:1330-1339.
Esclapez M, Hirsch JC, Ben-Ari Y, Bernard C. Newly formed excitatory pathways provide a substrate for hyperexcitability in experimental temporal lobe epilepsy. J Comp Neurol. 1999;408:449-460.
Stasheff SF, Anderson WW, Clark S, Wilson WA. NMDA antagonists differentiate epileptogenesis from seizure expression in an in vitro model. Science. 1989;245:648-651.
Khalilov I, Holmes GL, Ben-Ari Y. In vitro formation of a secondary epileptogenic mirror focus by interhippocampal propagation of seizures. Nat Neurosci. 2003;6:1079-1085.
Croucher MJ, Bradford HF. Kindling of full limbic seizures by repeated microinjections of excitatory amino acids into the rat amygdala. Brain Res. 1989;501:58-65.
Croucher MJ, Cotterell KL, Bradford HF. Amygdaloid kindling by repeated focal N-methyl-d-aspartate administration: comparison with electrical kindling. Eur J Pharmacol. 1995;286:265-271.
Peret A, Christie LA, Ouedraogo DW, Gorlewicz A, Epsztein J, Mulle C, et al. Contribution of aberrant GluK2-containing kainate receptors to chronic seizures in temporal lobe epilepsy. Cell Rep. 2014;8:347-354.
Ben-Ari Y, Crepel V, Represa A. Seizures beget seizures in temporal lobe epilepsies: the boomerang effects of newly formed aberrant kainatergic synapses. Epilepsy Curr. 2008;8:68-72.
Guerrini R, Cavallin M, Pippucci T, Rosati A, Bisulli F, Dimartino P, et al. Is focal cortical dysplasia/epilepsy caused by somatic MTOR mutations always a unilateral disorder? Neurol-Genet. 2021;7(1):e540.
Curatolo P, Specchio N, Aronica E. Advances in the genetics and neuropathology of tuberous sclerosis complex: edging closer to targeted therapy. Lancet Neurol. 2022;21:843-856.
Berg AT, Shinnar S. Do seizures beget seizures? An assessment of the clinical evidence in humans. J Clin Neurophysiol. 1997;14:102-110.
Goodkin HP, Bertram EH. Long-term effects of seizures on brain structure and function. In: Shorvon S, Pedley TA, editors. Blue books of neurology. Volume 33. Oxford: Butterworth-Heinemann; 2009. p. 39-52.
Scheffer IE, Berkovic S, Capovilla G, Connolly MB, French J, Guilhoto L, et al. ILAE classification of the epilepsies: position paper of the ILAE Commission for Classification and Terminology. Epilepsia. 2017;58:512-521.
Jefferys JGR. Chronic epileptic foci in vitro in hippocampal slices from rats with the tetanus toxin epileptic syndrome. J Neurophysiol. 1989;62:458-468.
Jefferys JGR, Jiruska P. The tetanus toxin model of temporal lobe epilepsy. In: Schwartzkroin PA. Encyclopedia of basic epilepsy research. 1st ed. Academic Press; 2009. p. 804-807.
Ferecsko AS, Jiruska P, Foss L, Powell AD, Chang WC, Sik A, et al. Structural and functional substrates of tetanus toxin in an animal model of temporal lobe epilepsy. Brain Struct Funct. 2015;220:1013-1029.
Brace HM, Jefferys JG, Mellanby J. Long-term changes in hippocampal physiology and learning ability of rats after intrahippocampal tetanus toxin. J Physiol. 1985;368:343-357.
Vreugdenhil M, Hack SP, Draguhn A, Jefferys JG. Tetanus toxin induces long-term changes in excitation and inhibition in the rat hippocampal CA1 area. Neuroscience. 2002;114:983-994.
Nieto-Rostro M, Sandhu G, Bauer CS, Jiruska P, Jefferys JGR, Dolphin AC. Altered expression of the voltage-gated calcium channel subunit alpha(2)delta-1: a comparison between two experimental models of epilepsy and a sensory nerve ligation model of neuropathic pain. Neuroscience. 2014;283:124-137.
Mitchell J, Gatherer M, Sundstrom LE. Loss of hilar somatostatin neurons following tetanus toxin-induced seizures. Acta Neuropathol. 1995;89:425-430.
Pitsch J, Becker AJ, Schoch S, Muller JA, de Curtis M, Gnatkovsky V. Circadian clustering of spontaneous epileptic seizures emerges after pilocarpine-induced status epilepticus. Epilepsia. 2017;58:1159-1171.
Goffin K, Nissinen J, van Laere K, Pitkanen A. Cyclicity of spontaneous recurrent seizures in pilocarpine model of temporal lobe epilepsy in rat. Exp Neurol. 2007;205:501-505.
Kudlacek J, Chvojka J, Kumpost V, Hermanovska B, Posusta A, Jefferys JGR, et al. Long-term seizure dynamics are determined by the nature of seizures and the mutual interactions between them. Neurobiol Dis. 2021;154:105347.
Haut SR. Seizure clustering. Epilepsy Behav. 2006;8:50-55.
Karoly PJ, Rao VR, Gregg NM, Worrell GA, Bernard C, Cook MJ, et al. Cycles in epilepsy. Nat Rev Neurol. 2021;17:267-284.
Baud MO, Kleen JK, Mirro EA, Andrechak JC, King-Stephens D, Chang EF, et al. Multi-day rhythms modulate seizure risk in epilepsy. Nature Commun. 2018;9(1):88.
Maturana MI, Meisel C, Dell K, Karoly PJ, D'Souza W, Grayden DB, et al. Critical slowing down as a biomarker for seizure susceptibility. Nature Commun. 2020;11(1):2172.
Chang WC, Kudlacek J, Hlinka J, Chvojka J, Hadrava M, Kumpost V, et al. Loss of neuronal network resilience precedes seizures and determines the ictogenic nature of interictal synaptic perturbations. Nat Neurosci. 2018;21(12):1742-1752.
Karoly PJ, Freestone DR, Boston R, Grayden DB, Himes D, Leyde K, et al. Interictal spikes and epileptic seizures: their relationship and underlying rhythmicity. Brain J Neurol. 2016;139:1066-1078.
Smith ZZ, Benison AM, Bercum FM, Dudek FE, Barth DS. Progression of convulsive and nonconvulsive seizures during epileptogenesis after pilocarpine-induced status epilepticus. J Neurophysiol. 2018;119:1818-1835.
Mucha RF, Pinel PJ. Postseizure inhibition of kindled seizures. Exp Neurol. 1977;54:266-282.
Handforth A. Postseizure inhibition of kindled seizures by electroconvulsive shock. Exp Neurol. 1982;78:483-491.
Fink M. Efficacy and safety of induced seizures (EST) in man. Compr Psychiatry. 1978;19:1-18.
Green MA. Relation between threshold and duration of seizures and electrographic change during convulsive therapy. J Nerv Ment Dis. 1960;131:117-120.
Shapira B, Lidsky D, Gorfine M, Lerer B. Electroconvulsive therapy and resistant depression: clinical implications of seizure threshold. J Clin Psychiatry. 1996;57:32-38.
Racine RJ. Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol. 1972;32:281-294.
Loscher W, Kohling R. Functional, metabolic, and synaptic changes after seizures as potential targets for antiepileptic therapy. Epilepsy Behav. 2010;19:105-113.
Woldbye DP, Madsen TM, Larsen PJ, Mikkelsen JD, Bolwig TG. Neuropeptide Y inhibits hippocampal seizures and wet dog shakes. Brain Res. 1996;737:162-168.
Koepp MJ, Richardson MP, Brooks DJ, Duncan JS. Focal cortical release of endogenous opioids during reading-induced seizures. Lancet. 1998;352:952-955.
Jones LS. Naloxone blocks antiepileptogenic properties of an in vitro electroconvulsive shock model. Brain Res. 1991;564:336-340.
Isaac L, Swanger J. Alteration of electroconvulsive threshold by cerebrospinal fluid from cats tolerant to electroconvulsive shock. Life Sci. 1983;33:2301-2304.
Stean TO, Atkins AR, Heidbreder CA, Quinn LP, Trail BK, Upton N. Postsynaptic 5-HT1B receptors modulate electroshock-induced generalised seizures in rats. Br J Pharmacol. 2005;144:628-635.