Mining the soil myxobacteria and finding sources of anti-diabetic metabolites

. 2024 Feb ; 69 (1) : 109-119. [epub] 20230721

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37477787
Odkazy

PubMed 37477787
DOI 10.1007/s12223-023-01074-8
PII: 10.1007/s12223-023-01074-8
Knihovny.cz E-zdroje

Secondary metabolites produced by myxobacterial genera are often characterized as diverse molecules with unique structural properties which drove us to search for myxobacterial source of anti-diabetic drug discovery. In the present study, from 80 soil samples, out of sixty-five observed isolates, 30 and 16 were purified as Myxococcus and non-Myxococcus, respectively. Isolated strains taxonomically belonged to the genera Myxococcus, Corallococcus and Cystobacter, Archangium, Nanocystis, and Sorangium, and some could not be attributed. Secondary metabolites of selected non-Myxococcus isolates extracted by the liquid-liquid method showed that the myxobacterium UTMC 4530 demonstrated the highest inhibition on the formation of carbonyl group and fructosamine, respectively. In addition, it showed 23% and 15.8% inhibitory activity on α-glucosides and α-amylase compared to acarbose (23%, 18%), respectively. The extract of strain UTMC 4530 showed 35% induction effect on glucose adsorption while showing no radical scavenging activity and no toxic effect on HRBC lysis and HepG2 in cytotoxicity assays. The strain UTMC 4530 (ON808962), with the multiple antidiabetic activity, showed 87.3% similarity to Corallococcus llansteffanensis which indicates its affiliation to a new genus. The results of this study revealed that secondary metabolites produced by strain UTMC 4530 can be considered a promising source to find new therapeutic and pharmaceutical applications perhaps a multi-mechanism anti-diabetic compound.

Zobrazit více v PubMed

Almasi F, Mohammadipanah F, Adhami H-R, Hamedi J (2018) Introduction of marine-derived Streptomycessp. UTMC 1334 as a source of pyrrole derivatives with anti-acetylcholinesterase activity. J Appl Microbiol 125:1370–1382. https://doi.org/10.1111/jam.14043 PubMed DOI

Babadi ZK, Garcia R, Ebrahimipour GH et al (2022) Corallococcus soli sp. Nov., a soil myxobacterium isolated from subtropical climate, Chalus County, Iran, and its potential to produce secondary metabolites. Microorganisms 10:1262. https://doi.org/10.3390/microorganisms10071262

Bader CD, Panter F, Müller R (2020) In depth natural product discovery - myxobacterial strains that provided multiple secondary metabolites. Biotechnol Adv 39:107480. https://doi.org/10.1016/j.biotechadv.2019.107480

Baynest HW (2015) Classification, pathophysiology, diagnosis and management of diabetes mellitus. J Diabetes Metab 6. https://doi.org/10.4172/2155-6156.1000541

Bhat MA, Mishra AK, Bhat MA et al (2021) Myxobacteria as a source of new bioactive compounds: a perspective study. Pharmaceutics 13:1265. https://doi.org/10.3390/pharmaceutics13081265 PubMed DOI PMC

Caprioglio D, Minassi A, Avonto C et al (2020) Thiol-trapping natural products under the lens of the cysteamine assay: friends, foes, or simply alternatively reversible ligands? Phytochem Rev 19:1307–1321. https://doi.org/10.1007/s11101-020-09700-w DOI

Chelliah R, Banan-MwineDaliri E, Oh D-H (2022) Screening of actinobacteria for enzyme inhibitor activity. Methods in Actinobacteriology 475–478

Cho NH, Shaw JE, Karuranga S et al (2018) IDF Diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract 138:271–281. https://doi.org/10.1016/j.diabres.2018.02.023 PubMed DOI

Dai W, Liu Y, Yao D et al (2023) Phylogenetic diversity of stochasticity-dominated predatory myxobacterial community drives multi-nutrient cycling in typical farmland soils. Sci Total Environ 871:161680. https://doi.org/10.1016/j.scitotenv.2023.161680

Dariya B, Nagaraju GP (2020) Advanced glycation end products in diabetes, cancer and phytochemical therapy. Drug Discov Today 25:1614–1623. https://doi.org/10.1016/j.drudis.2020.07.003 PubMed DOI

Dawid W (2000) Biology and global distribution of myxobacteria in soils. FEMS Microbiol. Rev. 24(4):403–427. https://doi.org/10.1111/j.1574-6976.2000.tb00548.x PubMed DOI

Ding X, Zhang J, Jiang P et al (2004) Structural features and hypoglycaemic activity of an exopolysaccharide produced by Sorangium cellulosum. Lett Appl Microbiol 38:223–228. https://doi.org/10.1111/j.1472-765x.2004.01465.x PubMed DOI

Galushko A, Kuever J (2020) Desulfovibrionaceae. Bergey’s Man. Syst Archaea Bact 1–13

Herrmann J, Fayad AA, Müller R (2017) Natural products from myxobacteria: novel metabolites and bioactivities. Nat Prod Rep 34:135–160. https://doi.org/10.1039/c6np00106h PubMed DOI

Hong Son B, Van Nga V, Thi Diem Hong L, Thi Quynh D (2022) Potent natural inhibitors of alpha-glucosidase and the application of Aspergillus spp. in diabetes type 2 drugs: a review. VNU J Sci Med Pharm Sci 38. https://doi.org/10.25073/2588-1132/vnumps.4334

Improta G, Luciano MA, Vecchione D et al (2021) Management of the diabetic patient in the diagnostic care pathway. 8th European Medical and Biological Engineering Conference: Proceedings of the EMBEC 2020, November 29–December 3, 2020 Portorož, Slovenia. pp 784–792 DOI

Indupalli M, Muvva V, Mangamuri U, Munaganti R K and Naragani K (2018) Bioactive compounds from mangrove derived rare actinobacterium Saccharomonospora oceani VJDS-3. 3 Biotech 8:1–9. https://doi.org/10.1007/s13205-018-1093-6

Jayaprakashvel M (2012) Therapeutically active biomolecules from marine actinomycetes. J Mod Biotechnol 1:1–7

Kamiloglu S, Sari G, Ozdal T, Capanoglu E (2020) Guidelines for cell viability assays. Food Front 1:332–349. https://doi.org/10.1002/fft2.44 DOI

Kaur S, Singh B, Kaur N, Kaur S (2018) Pharmacognostic investigations on leaves of grewia asiatica linn. Int Res J Pharm 9:85–90. https://doi.org/10.7897/2230-8407.09578 DOI

Khan MAB, Hashim MJ, King JK et al (2020) Epidemiology of type 2 diabetes - global burden of disease and forecasted trends. J Epidemiol Glob Health 10:107–111. https://doi.org/10.2991/jegh.k.191028.001 PubMed DOI PMC

Khanal P, Patil BM, Mandar BK et al (2019) Network pharmacology-based assessment to elucidate the molecular mechanism of anti-diabetic action of Tinospora cordifolia. Clin Phytoscience 5. https://doi.org/10.1186/s40816-019-0131-1

Kulkarni-Almeida AA, Brahma MK, Padmanabhan P et al (2011) Fermentation, isolation, structure, and antidiabetic activity of NFAT-133 produced by Streptomyces strain PM0324667. AMB Express 1:42. https://doi.org/10.1186/2191-0855-1-42 PubMed DOI PMC

Kumar SRS, Rao KVB (2018) Efficacy of alpha glucosidase inhibitor from marine Actinobacterium in the control of postprandial hyperglycaemia in Streptozotocin (STZ) induced diabetic male albino Wister rats. Iran J Pharm Res IJPR 17:202 PubMed

Paul S, Majumdar M (2020) In-vitro antidiabetic propensities, phytochemical analysis, and mechanism of action of commercial antidiabetic polyherbal formulation “Mehon”. 1st Int Electron Conf Biomol Nat Bio-Inspired Ther Hum Dis

Petters S, Groß V, Söllinger A et al (2021) The soil microbial food web revisited: predatory myxobacteria as keystone taxa? ISME J 15:2665–2675. https://doi.org/10.1038/s41396-021-00958-2 PubMed DOI PMC

Ratte M, Batubara I, Lestari Y (2022) Morphological characterization and antioxidant activity of actinobacteria from Xylocarpus granatum growing in mangrove habitat. Biotropika J Trop Biol 10

Ravi L, Ragunathan A, Krishnan K (2017) Antidiabetic and antioxidant potential of GancidinW from streptomyces paradoxus VITALK03. Open Bioact Compd J 5:31–42. https://doi.org/10.2174/1874847301705010031 DOI

Rehman G, Hamayun M, Iqbal A et al (2018) In vitro antidiabetic effects and antioxidant potential of Cassia nemophila pods. Biomed Res Int 2018:1824790. https://doi.org/10.1155/2018/1824790 PubMed DOI PMC

Saadatpour F, Mohammadipanah F (2020) Bioprospecting of indigenous myxobacteria from Iran and potential of Cystobacter as a source of anti-MDR compounds. Folia Microbiol (praha) 65:639–648 PubMed DOI

Saggu SK, Nath A, Kumar S (2023) Myxobacteria: biology and bioactive secondary metabolites. Res Microbiol 104079

Salimi F, Jafari-Nodooshan S, Zohourian N et al (2018) Simultaneous anti-diabetic and anti-vascular calcification activity of Nocardia sp. UTMC 751. Lett Appl Microbiol 66:110–117. https://doi.org/10.1111/lam.12833 PubMed DOI

Savych AO, Marchyshyn S, Kozyr H, Yarema N (2021) Determination of inulin in the herbal mixtures by GC-MS method. Pharmacia 68(1):181–187. https://doi.org/10.3897/pharmacia.68.e55051 DOI

Shrivastava A, Sharma RK (2021) Myxobacteria and their products: current trends and future perspectives in industrial applications. Folia Microbiol (praha). https://doi.org/10.1007/s12223-021-00875-z PubMed DOI

Tamura K, Stecher G, Kumar S (2021) MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol 38:3022–3027 PubMed DOI PMC

Tupe RS, Kemse NG, Khaire AA, Shaikh SA (2017) Attenuation of glycation-induced multiple protein modifications by Indian antidiabetic plant extracts. Pharm Biol 55:68–75. https://doi.org/10.1080/13880209.2016.1228683 PubMed DOI

Waite DW, Chuvochina M, Pelikan C et al (2020) Proposal to reclassify the proteobacterial classes Deltaproteobacteria and Oligoflexia, and the phylum Thermodesulfobacteria into four phyla reflecting major functional capabilities. Int J Syst Evol Microbiol 70:5972–6016. https://doi.org/10.1099/ijsem.0.004213 PubMed DOI

Wang K-J, Zhao J-L (2019) Corn silk (Zea mays L.), a source of natural antioxidants with α-amylase, α-glucosidase, advanced glycation and diabetic nephropathy inhibitory activities. Biomed Pharmacother 110:510–517. https://doi.org/10.1016/j.biopha.2018.11.126 PubMed DOI

Wang P, Jiang X, Jiang Y et al (2007) In vitro antioxidative activities of three marine oligosaccharides. Nat Prod Res 21:646–654 PubMed DOI

Wang W, Xu H, Chen H et al (2016) In vitro antioxidant, anti-diabetic and antilipemic potentials of quercetagetin extracted from marigold (Tagetes erecta L.) inflorescence residues. J Food Sci Technol 53:2614–2624. https://doi.org/10.1007/s13197-016-2228-6 PubMed DOI PMC

Weissman KJ, Müller R (2009) A brief tour of myxobacterial secondary metabolism. Bioorganic Med Chem 17:2121–2136. https://doi.org/10.1016/j.bmc.2008.11.025 DOI

Whang A, Nagpal R, Yadav H (2019) Bi-directional drug-microbiome interactions of anti-siabetics. Ebiomedicine 39:591–602. https://doi.org/10.1016/j.ebiom.2018.11.046 PubMed DOI

Wu Z-H, Jiang D-M, Li P, Li Y-Z (2005) Exploring the diversity of myxobacteria in a soil niche by myxobacteria-specific primers and probes. Environ Microbiol 7:1602–1610. https://doi.org/10.1111/j.1462-2920.2005.00852.x PubMed DOI

Yoon S-H, Ha S-M, Kwon S et al (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67:1613–1617. https://doi.org/10.1099/ijsem.0.001755 PubMed DOI PMC

Yoon S-Y, Lee SR, Hwang JY et al (2019) Fridamycin A, a microbial natural product, stimulates glucose uptake without inducing adipogenesis. Nutrients 11:765. https://doi.org/10.3390/nu11040765 PubMed DOI PMC

Ziolkowska S, Binienda A, Jabłkowski M et al (2021) The interplay between insulin resistance, inflammation, oxidative stress, base excision repair and metabolic syndrome in nonalcoholic fatty liver disease. Int J Mol Sci 22:11128. https://doi.org/10.3390/ijms222011128 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...