Biological Activity and Thrombogenic Properties of Oxide Nanotubes on the Ti-13Nb-13Zr Biomedical Alloy
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
37504870
PubMed Central
PMC10382023
DOI
10.3390/jfb14070375
PII: jfb14070375
Knihovny.cz E-resources
- Keywords
- Ti-13Nb-13Zr alloy, anodization, athrombogenity, biological activity, biomaterials, drug delivery system, oxide nanotubes,
- Publication type
- Journal Article MeSH
The success of implant treatment is dependent on the osseointegration of the implant. The main goal of this work was to improve the biofunctionality of the Ti-13Nb-13Zr implant alloy by the production of oxide nanotubes (ONTs) layers for better anchoring in the bone and use as an intelligent carrier in drug delivery systems. Anodization of the Ti-13Nb-13Zr alloy was carried out in 0.5% HF, 1 M (NH4)2SO4 + 2% NH4F, and 1 M ethylene glycol + 4 wt.% NH4F electrolytes. Physicochemical characteristics of ONTs were performed by high-resolution electron microscopy (HREM), X-ray photoelectron spectroscopy (XPS), and scanning Kelvin probe (SKP). Water contact angle studies were conducted using the sitting airdrop method. In vitro biological properties and release kinetics of ibuprofen were investigated. The results of TEM and XPS studies confirmed the formation of the single-walled ONTs of three generations on the bi-phase (α + β) Ti-13Nb-13Zr alloy. The ONTs were composed of oxides of the alloying elements. The proposed surface modification method ensured good hemolytic properties, no cytotoxity for L-929 mouse cells, good adhesion, increased surface wettability, and improved athrombogenic properties of the Ti-13Nb-13Zr alloy. Nanotubular surfaces allowed ibuprofen to be released from the polymer matrix according to the Gallagher-Corrigan model.
See more in PubMed
Davis R., Singh A., Jackson M.J., Coelho R.T., Prakash D., Charalambous C.P., Ahmed W., da Silva L.R.R., Lawrence A.A. A comprehensive review on metallic implant biomaterials and their subtractive manufacturing. Int. J. Adv. Manuf. Technol. 2022;120:1473–1530. doi: 10.1007/s00170-022-08770-8. PubMed DOI PMC
Branemark P.I. The Osseointegration Book: From Calvarium to Calcaneus. 1st ed. Quintessence; Berlin, Germany: 2007.
Dudek K., Dulski M., Łosiewicz B. Functionalization of the NiTi Shape Memory Alloy Surface by HAp/SiO2/Ag Hybrid Coatings Formed on SiO2-TiO2 Glass Interlayer. Materials. 2020;13:1648. doi: 10.3390/ma13071648. PubMed DOI PMC
Stróż A., Maszybrocka J., Goryczka T., Dudek K., Osak P., Łosiewicz B. Influence of Anodizing Conditions on Biotribological and Micromechanical Properties of Ti–13Zr–13Nb Alloy. Materials. 2023;16:1237. doi: 10.3390/ma16031237. PubMed DOI PMC
Łosiewicz B., Stróż A., Osak P., Maszybrocka J., Gerle A., Dudek K., Balin K., Łukowiec D., Gawlikowski M., Bogunia S. Production, Characterization and Application of Oxide Nanotubes on Ti–6Al–7Nb Alloy as a Potential Drug Carrier. Materials. 2021;14:6142. doi: 10.3390/ma14206142. PubMed DOI PMC
Aniołek K., Łosiewicz B., Kubisztal J., Osak P., Stróż A., Barylski A., Kaptacz S. Mechanical properties, corrosion resistance and bioactivity of oxide layers formed by isothermal oxidation of Ti-6Al-7Nb alloy. Coatings. 2021;11:505. doi: 10.3390/coatings11050505. DOI
Wang W., Yeung K.W.K. Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioact. Mater. 2017;2:224–247. doi: 10.1016/j.bioactmat.2017.05.007. PubMed DOI PMC
Jakubowicz J., editor. Ti-Based Biomaterials. MDPI; Basel, Switzerland: 2020. Ti-Based Biomaterials. PubMed DOI PMC
Stróż A., Goryczka T., Łosiewicz B. Electrochemical formation of self-organized nanotubular oxide layers on niobium (Review) Curr. Nanosci. 2019;15:42–48. doi: 10.2174/1573413714666180115141012. DOI
Stróż A., Dercz G., Chmiela B., Łosiewicz B. Electrochemical synthesis of oxide nanotubes on biomedical Ti13Nb13Zr alloy with potential use as bone implant. AIP Conf. Proc. 2019;2083:030004. doi: 10.1063/1.5094314. DOI
Szklarska M., Dercz G., Simka W., Łosiewicz B. Ac impedance study on the interfacial properties of passivated Ti13Zr13Nb alloy in physiological saline solution. Surf. Interface Anal. 2014;46:698–701. doi: 10.1002/sia.5383. DOI
Stróż A., Luxbacher T., Dudek K., Chmiela B., Osak P., Łosiewicz B. In Vitro Bioelectrochemical Properties of Second-Generation Oxide Nanotubes on Ti–13Zr–13Nb Biomedical Alloy. Materials. 2023;16:1408. doi: 10.3390/ma16041408. PubMed DOI PMC
Stróż A., Łosiewicz B., Zubko M., Chmiela B., Balin K., Dercz G., Gawlikowski M., Goryczka T. Production, structure and biocompatible properties of oxide nanotubes on Ti13Nb13Zr alloy for medical applications. Mater. Charact. 2017;132:363–372. doi: 10.1016/j.matchar.2017.09.004. DOI
Łosiewicz B., Stróż A., Kubisztal J., Osak P., Zubko M. EIS and LEIS Study on In Vitro Corrosion Resistance of Anodic Oxide Nanotubes on Ti–13Zr–13Nb Alloy in Saline Solution. Coatings. 2023;13:875. doi: 10.3390/coatings13050875. DOI
Sowa M., Piotrowska M., Widziołek M., Dercz G., Tylko G., Gorewoda T., Osyczka A.M., Simka W. Bioactivity of coatings formed on Ti-13Nb-13Zr alloy using plasma electrolytic oxidation. Mater. Sci. Eng. C Mater. Biol. Appl. 2015;49:159–173. doi: 10.1016/j.msec.2014.12.073. PubMed DOI
Levin M., Spiro R.C., Jain H., Falk M.M. Effects of Titanium Implant Surface Topology on Bone Cell Attachment and Proliferation in vitro. Med. Devices. 2022;15:103–119. doi: 10.2147/MDER.S360297. PubMed DOI PMC
Seramak T., Zieliński A., Serbiński W., Zasińska K. Powder metallurgy of the porous Ti-13Nb-13Zr alloy of different powder grain size. Mater. Manuf. 2019;34:915–920. doi: 10.1080/10426914.2019.1605178. DOI
Eisenbarth E., Velten D., Müller M., Thull R., Breme J. Biocompatibility of β-stabilizing elements of titanium alloys. Biomaterials. 2004;25:5705–5713. doi: 10.1016/j.biomaterials.2004.01.021. PubMed DOI
Albrektsson T., Brånemark P.I., Hansson H.A., Lindström J. Osseointegrated titanium implants: Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop. Scand. 1981;52:155–170. doi: 10.3109/17453678108991776. PubMed DOI
Shivaram A., Bose S., Bandyopadhyay A. Mechanical degradation of TiO2 nanotubes with and without nanoparticulate silver coating. J. Mech. Behav. Biomed. Mater. 2016;59:508–518. doi: 10.1016/j.jmbbm.2016.02.028. PubMed DOI PMC
Williams D.F. On the mechanisms of biocompatibility. Biomaterials. 2008;29:2941–2953. doi: 10.1016/j.biomaterials.2008.04.023. PubMed DOI
Schenk R.K., Buser D. Osseointegration: A reality. Periodontology 2000. 1998;17:22–35. doi: 10.1111/j.1600-0757.1998.tb00120.x. PubMed DOI
Gulati K., Maher S., Findlay D.M., Losic D. Titania nanotubes for orchestrating osteogenesis at the bone–implant interface. Nanomedicine. 2016;11:1847–1864. doi: 10.2217/nnm-2016-0169. PubMed DOI
Kulkarni M., Mazare A., Gongadze E., Perutkova Š., Kralj-Iglič V., Milošev I., Schmuki P., Iglič A., Mozetič M. Titanium nanostructures for biomedical applications. Nanotechnology. 2015;26:062002. doi: 10.1088/0957-4484/26/6/062002. PubMed DOI
Hanawa T. Titanium–Tissue Interface Reaction and Its Control With Surface Treatment. Front. Bioeng. Biotechnol. 2019;7:170. doi: 10.3389/fbioe.2019.00170. PubMed DOI PMC
Awad N.K., Edwards S.L., Morsi Y.S. A review of TiO2 NTs on Ti metal: Electrochemical synthesis, functionalization and potential use as bone implants. Mater. Sci. Eng. C Mater. Biol. Appl. 2017;76:1401–1412. doi: 10.1016/j.msec.2017.02.150. PubMed DOI
Li Y., Yang Y., Li R., Tang X., Guo D., Qing Y., Qin Y. Enhanced antibacterial properties of orthopedic implants by titanium nanotube surface modification: A review of current techniques. Int. J. Nanomed. 2019;14:7217–7236. doi: 10.2147/IJN.S216175. PubMed DOI PMC
Rani S., Roy S.C., Paulose M., Varghese O.K., Mor G.K., Kim S., Yoriya S., LaTempa T.J., Grimes C.A. Synthesis and applications of electrochemically self-assembled titania nanotube arrays. Phys. Chem. Chem. Phys. 2010;12:2780–2800. doi: 10.1039/b924125f. PubMed DOI
Lyndon J.A., Boyd B.J., Birbilis N. Metallic implant drug/device combinations for controlled drug release in orthopaedic applications. J. Control. Release. 2014;179:63–75. doi: 10.1016/j.jconrel.2014.01.026. PubMed DOI
Al-Dubai H., Pittner G., Pittner F., Gabor F. Biocompatible medical implant materials with binding sites for a biodegradable drug-delivery system. Nanotechnol. Sci. Appl. 2011;4:87–94. doi: 10.2147/NSA.S23605. PubMed DOI PMC
Wu B., Tang Y., Wang K., Zhou X., Xiang L. Nanostructured Titanium Implant Surface Facilitating Osseointegration from Protein Adsorption to Osteogenesis: The Example of TiO2 NTAs. Int. J. Nanomed. 2022;17:1865–1879. doi: 10.2147/IJN.S362720. PubMed DOI PMC
Roy P., Berger S., Schmuki P. TiO2 Nanotubes: Synthesis and Applications. Angew. Chem. Int. Ed. 2011;50:2904–2939. doi: 10.1002/anie.201001374. PubMed DOI
Smołka A., Rodak K., Dercz G., Dudek K., Łosiewicz B. Electrochemical Formation of Self-Organized Nanotubular Oxide Layers on Ti13Zr13Nb Alloy for Biomedical Applications. Acta Phys. Pol. A. 2014;125:932–935. doi: 10.12693/APhysPolA.125.932. DOI
Smołka A., Dercz G., Rodak K., Łosiewicz B. Evaluation of Corrosion Resistance of Nanotubular Oxide Layers on the Ti13Zr13Nb Alloy in Physiological Saline Solution. Arch. Metall. Mater. 2015;60:2681–2686. doi: 10.1515/amm-2015-0432. DOI
Stróż A., Dercz G., Chmiela B., Stróż D., Łosiewicz B. Electrochemical Formation of Second Generation TiO2 Nanotubes on Ti13Nb13Zr Alloy for Biomedical Applications. Acta Phys. Pol. A. 2016;130:1079–1080. doi: 10.12693/APhysPolA.130.1079. DOI
Aïnouche L., Hamadou L., Kadri A., Benbrahim N., Bradai D. Interfacial Barrier Layer Properties of Three Generations of TiO2 Nanotube Arrays. Electrochim. Acta. 2014;133:597–609. doi: 10.1016/j.electacta.2014.04.086. DOI
Panaitescu E., Richter C., Menon L. A Study of Titania Nanotube Synthesis in Chloride-Ion-Containing Media. J. Electrochem. Soc. 2008;155:E7. doi: 10.1149/1.2800170. DOI
Standard Practice For Assessment Of Hemolytic Properties Of Materials. ASTM International; West Conshohocken, PA, USA: 2017.
Biological Evaluation of Medical Devices-Part 5: Tests for In Vitro Cytotoxicity. ISO; Geneva, Switzerland: 2009.
Dhurat R., Sukesh M. Principles and Methods of Preparation of Platelet-Rich Plasma: A Review and Author’s Perspective. J. Cutan. Aesthet. Surg. 2014;7:189–197. doi: 10.4103/0974-2077.150734. PubMed DOI PMC
Gawlikowski M., Major R., Mika B., Komorowski D., Janiczak K., Tkacz E., Tamulewicz A., Piaseczna N. Semi-Quantitative Method of Assessing the Thrombogenicity of Biomaterials Intended for Long-Term Blood Contact. Materials. 2023;16:38. doi: 10.3390/ma16010038. PubMed DOI PMC
Handzlik P., Gutkowski K. Synthesis of oxide nanotubes on Ti13Nb13Zr alloy by the electrochemical method. J. Porous Mater. 2019;26:1631–1637. doi: 10.1007/s10934-019-00759-1. DOI
Łosiewicz B., Skwarek S., Stróż A., Osak P., Dudek K., Kubisztal J., Maszybrocka J. Production and Characterization of the Third-Generation Oxide Nanotubes on Ti-13Zr-13Nb Alloy. Materials. 2022;15:2321. doi: 10.3390/ma15062321. PubMed DOI PMC
Łosiewicz B., Osak P., Maszybrocka J., Kubisztal J., Stach S. Effect of Autoclaving Time on Corrosion Resistance of Sandblasted Ti G4 in Artificial Saliva. Materials. 2020;13:4154. doi: 10.3390/ma13184154. PubMed DOI PMC
Ossowska A., Sobieszczyk S., Supernak M., Zielinski A. Morphology and properties of nanotubular oxide layer on the “Ti–13Zr–13Nb” alloy. Surf. Coat. Technol. 2014;258:1239–1248. doi: 10.1016/j.surfcoat.2014.06.054. DOI
Suzuki K., Aoki K., Ohya K. Effects of surface roughness of titanium implants on bone remodeling activity of femur in rabbits. Bone. 1997;21:507–514. doi: 10.1016/S8756-3282(97)00204-4. PubMed DOI
Schmidt C., Kaspar D., Sarkar M.R., Claes L.E., Ignatius A.A. A scanning electron microscopy study of human osteoblast morphology on five orthopedic metals. J. Biomed. Mater. 2002;63:252–261. doi: 10.1002/jbm.10185. PubMed DOI
Biesinger M.C., Lau L.W.M., Gerson A.R., Smart R.S.C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 2010;257:887–898. doi: 10.1016/j.apsusc.2010.07.086. DOI
Vikulova E.S., Karakovskaya K.I., Korolkov I.V., Koretskaya T.P., Chepeleva E.V., Kuz’min N.B., Fedorenko A.D., Pischur D.P., Guselnikova T.Y., Maksimovskii E.A., et al. Application of Biocompatible Noble Metal Film Materials to Medical Implants: TiNi Surface Modification. Coatings. 2023;13:222. doi: 10.3390/coatings13020222. DOI
Naumkin A.V., Kraut-Vass A., Gaarenstroom S.W., Powell C.J. NIST X-ray Photoelectron Spectroscopy Database. National Institute of Standards and Technology; Gaithersburg, MD, USA: 2000. NIST Standard Reference Database 20, Version 4.1.
Gondal M.A., Fasasi T.A., Baig U., Mekki A. Effects of Oxidizing Media on the Composition, Morphology and Optical Properties of Colloidal Zirconium Oxide Nanoparticles Synthesized via Pulsed Laser Ablation in Liquid Technique. J. Nanosci. Nanotechnol. 2018;18:4030–4039. doi: 10.1166/jnn.2018.15244. PubMed DOI
Kubisztal J., Łosiewicz B., Dybał P., Kozik V., Bąk A. Water-Induced Corrosion Damage of Carbon Steel in Sulfolane. Energies. 2020;13:4580. doi: 10.3390/en13174580. PubMed DOI PMC
Łosiewicz B., Osak P., Maszybrocka J., Kubisztal J., Bogunia S., Ratajczak P., Aniołek K. Effect of Temperature on Electrochemically Assisted Deposition and Bioactivity of CaP Coatings on CpTi Grade 4. Materials. 2021;14:5081. doi: 10.3390/ma14175081. PubMed DOI PMC
Kubisztal J., Łosiewicz B., Dybal P., Kozik V., Bak A. Temperature-Related Corrosion Resistance of AISI 1010 Carbon Steel in Sulfolane. Materials. 2020;13:2563. doi: 10.3390/ma13112563. PubMed DOI PMC
Grigorescu S., Pruna V., Titorencu I., Jinga V.V., Mazare A., Schmuki P., Demetrescu I. The two step nanotube formation on TiZr as scaffolds for cell growth. Bioelectrochemistry. 2014;98:39–45. doi: 10.1016/j.bioelechem.2014.03.002. PubMed DOI
Grigorescu S., Ungureanu C., Kirchgeorg R., Schmuki P., Demetrescu I. Various sized nanotubes on TiZr for antibacterial surfaces. Appl. Surf. Sci. 2013;270:190–196. doi: 10.1016/j.apsusc.2012.12.165. DOI
Kulkarni M., Patil-Sen Y., Junkar I., Kulkarni C.V., Lorenzetti M., Iglič A. Wettability studies of topologically distinct titanium surfaces. Colloids Surf. B Biointerfaces. 2015;129:47–53. doi: 10.1016/j.colsurfb.2015.03.024. PubMed DOI
Shin D.H., Shokuhfar T., Choi C.K., Lee S.H., Friedrich C. Wettability changes of TiO2 nanotube surfaces. Nanotechnology. 2011;22:315704. doi: 10.1088/0957-4484/22/31/315704. PubMed DOI
Brammer K.S., Oh S., Cobb C.J., Bjursten L.M., Heyde H., van der Jin S. Improved bone-forming functionality on diameter-controlled TiO2 nanotube surface. Acta Biomater. 2009;5:3215–3223. doi: 10.1016/j.actbio.2009.05.008. PubMed DOI
Citeau A., Guicheux J., Vinatier C., Layrolle P., Nguyen T.P., Pilet P., Daculsi G. In vitro biological effects of titanium rough surface obtained by calcium phosphate grid blasting. Biomaterials. 2005;26:157–165. doi: 10.1016/j.biomaterials.2004.02.033. PubMed DOI
Wang N., Li H., Lü W., Li J., Wang J., Zhang Z., Liu Y. Effects of TiO2 nanotubes with different diameters on gene expression and osseointegration of implants in minipigs. Biomaterials. 2011;32:6900–6911. doi: 10.1016/j.biomaterials.2011.06.023. PubMed DOI
Aninwene G.E.I., Yao C., Webster T.J. Enhanced osteoblast adhesion to drug-coated anodized nanotubular titanium surfaces. Int. J. Nanomed. 2008;3:257–264. doi: 10.2147/ijn.s2552. PubMed DOI PMC
Oh S., Daraio C., Chen L.H., Pisanic T.R., Fiñones R.R., Jin S. Significantly accelerated osteoblast cell growth on aligned TiO2 nanotubes. J. Biomed. Mater. Res. A. 2006;78A:97–103. doi: 10.1002/jbm.a.30722. PubMed DOI
Bauer S., Pittrof A., Tsuchiya H., Schmuki P. Size-effects in TiO2 nanotubes: Diameter dependent anatase/rutile stabilization. Electrochem. Commun. 2011;13:538–541. doi: 10.1016/j.elecom.2011.03.003. DOI
Shankland N., Wilson C.C., Florence A.J., Cox P.J. Refinement of Ibuprofen at 100 K by Single-Crystal Pulsed Neutron Diffraction Conmaent. Acta Cryst. 1997;C53:951–954. doi: 10.1107/S0108270197003193. DOI
Bushra R., Aslam N. An Overview of Clinical Pharmacology of Ibuprofen. Oman Med. J. 2010;25:155–161. doi: 10.5001/omj.2010.49. PubMed DOI PMC
Al-Janabi A.A. In vitro antibacterial activity of Ibuprofen and acetaminophen. J. Glob. Infect. Dis. 2010;2:105–108. doi: 10.4103/0974-777X.62880. PubMed DOI PMC
Zhao P., Liu H., Deng H., Xiao L., Qin C., Du Y., Shi X. A study of chitosan hydrogel with embedded mesoporous silica nanoparticles loaded by ibuprofen as a dual stimuli-responsive drug release system for surface coating of titanium implants. Colloids Surf. B Biointerfaces. 2014;123:657–663. doi: 10.1016/j.colsurfb.2014.10.013. PubMed DOI
Ren Z., Romar H., Varila T., Xu X., Wang Z., Sillanpää M., Leiviskä T. Ibuprofen degradation using a Co-doped carbon matrix derived from peat as a peroxymonosulphate activator. Environ. Res. 2021;193:110564. doi: 10.1016/j.envres.2020.110564. PubMed DOI
Jia H., Kerr L.L. Sustained ibuprofen release using composite poly(lactic-co-glycolic acid)/titanium dioxide nanotubes from Ti implant surface. J. Pharm. Sci. 2013;102:2341–2348. doi: 10.1002/jps.23580. PubMed DOI
Jarosz M., Pawlik A., Szuwarzyński M., Jaskuła M., Sulka G.D. Nanoporous anodic titanium dioxide layers as potential drug delivery systems: Drug release kinetics and mechanism. Colloids Surf. B Biointerfaces. 2016;143:447–454. doi: 10.1016/j.colsurfb.2016.03.073. PubMed DOI
Oyetade O.A., Martincigh B.S., Skelton A.A. The Interplay between Electrostatic and Hydrophobic Interactions in the pH-Dependent Adsorption of Ibuprofen onto Acid-Functionalized Multiwalled Carbon Nanotubes. J. Phys. Chem. C. 2018;122:22556–22568. doi: 10.1021/acs.jpcc.8b06841. DOI
Kurtoglu Y.E., Mishra M.K., Kannan S., Kannan R.M. Drug release characteristics of PAMAM dendrimer-drug conjugates with different linkers. Int. J. Pharm. 2010;384:189–194. doi: 10.1016/j.ijpharm.2009.10.017. PubMed DOI
Saravanan M., Bhaskar K., Srinivasa Rao G., Dhanaraju M.D. Ibuprofen-loaded ethylcellulose/polystyrene microspheres: An approach to get prolonged drug release with reduced burst effect and low ethylcellulose content. J. Microencapsul. 2003;20:289–302. doi: 10.1080/0265204031000093087. PubMed DOI