Optimized procedure for high-throughput transcriptome profiling of small extracellular vesicles isolated from low volume serum samples
Language English Country Germany Media electronic-print
Document type Journal Article
PubMed
37505924
DOI
10.1515/cclm-2023-0610
PII: cclm-2023-0610
Knihovny.cz E-resources
- Keywords
- colorectal cancer, high-throughput expression profiling, long non-coding RNAs, size exclusion chromatography, small extracellular vesicles, transcriptome,
- MeSH
- Extracellular Vesicles * genetics metabolism MeSH
- Chromatography, Gel MeSH
- Humans MeSH
- RNA MeSH
- Gene Expression Profiling * methods MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- RNA MeSH
OBJECTIVES: Small extracellular vesicles (EVs) contain various signaling molecules, thus playing a crucial role in cell-to-cell communication and emerging as a promising source of biomarkers. However, the lack of standardized procedures impedes their translation to clinical practice. Thus, we compared different approaches for high-throughput analysis of small EVs transcriptome. METHODS: Small EVs were isolated from 150 μL of serum. Quality and quantity were assessed by dynamic light scattering, transmission electron microscopy, and Western blot. Comparison of RNA extraction efficiency was performed, and expression of selected genes was analyzed by RT-qPCR. Whole transcriptome analysis was done using microarrays. RESULTS: Obtained data confirmed the suitability of size exclusion chromatography for isolation of small EVs. Analyses of gene expression showed the best results in case of samples isolated by Monarch Total RNA Miniprep Kit. Totally, 7,182 transcripts were identified to be deregulated between colorectal cancer patients and healthy controls. The majority of them were non-coding RNAs with more than 70 % being lncRNAs, while protein-coding genes represented the second most common gene biotype. CONCLUSIONS: We have optimized the protocol for isolation of small EVs and their RNA from low volume of sera and confirmed the suitability of Clariom D Pico Assays for transcriptome profiling.
Department of Biology Faculty of Medicine Masaryk University Brno Czech Republic
Department of Pharmacology and Toxicology Veterinary Research Institute Brno Czech Republic
See more in PubMed
Yáñez-Mó, M, Siljander, PR-M, Andreu, Z, Zavec, AB, Borràs, FE, Buzas, EI, et al.. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 2015;4:27066. https://doi.org/10.3402/jev.v4.27066 . DOI
Zhang, Y, Liu, Y, Liu, H, Tang, WH. Exosomes: biogenesis, biologic function and clinical potential. Cell Biosci 2019;9:19. https://doi.org/10.1186/s13578-019-0282-2 . DOI
Mittelbrunn, M, Sánchez-Madrid, F. Intercellular communication: diverse structures for exchange of genetic information. Nat Rev Mol Cell Biol 2012;13:328–35. https://doi.org/10.1038/nrm3335 . DOI
Atay, S, Godwin, AK. Tumor-derived exosomes. Commun Integr Biol 2014;7:e28231. https://doi.org/10.4161/cib.28231 . DOI
Chung, I-M, Rajakumar, G, Venkidasamy, B, Subramanian, U, Thiruvengadam, M. Exosomes: current use and future applications. Clin Chim Acta 2020;500:226–32. https://doi.org/10.1016/j.cca.2019.10.022 . DOI
Bao, Q, Gong, L, Wang, J, Wen, J, Shen, Y, Zhang, W. Extracellular vesicle RNA sequencing reveals dramatic transcriptomic alterations between metastatic and primary osteosarcoma in a liquid biopsy approach. Ann Surg Oncol 2018;25:2642–51. https://doi.org/10.1245/s10434-018-6642-z . DOI
Krug, AK, Enderle, D, Karlovich, C, Priewasser, T, Bentink, S, Spiel, A, et al.. Improved EGFR mutation detection using combined exosomal RNA and circulating tumor DNA in NSCLC patient plasma. Ann Oncol 2018;29:700–6. https://doi.org/10.1093/annonc/mdx765 . DOI
Royo, F, Théry, C, Falcón-Pérez, JM, Nieuwland, R, Witwer, KW. Methods for separation and characterization of extracellular vesicles: results of a worldwide survey performed by the ISEV rigor and standardization subcommittee. Cells 2020;9:1955. https://doi.org/10.3390/cells9091955 . DOI
Momen-Heravi, F, Balaj, L, Alian, S, Trachtenberg, AJ, Hochberg, FH, Skog, J, et al.. Impact of biofluid viscosity on size and sedimentation efficiency of the isolated microvesicles. Front Physiol 2012;3:162. https://doi.org/10.3389/fphys.2012.00162 . DOI
Kurian, TK, Banik, S, Gopal, D, Chakrabarti, S, Mazumder, N. Elucidating methods for isolation and quantification of exosomes: a Review. Mol Biotechnol 2021;63:249–66. https://doi.org/10.1007/s12033-021-00300-3 . DOI
Gámez-Valero, A, Monguió-Tortajada, M, Carreras-Planella, L, Franquesa, Mla, Beyer, K, Borràs, FE. Size-Exclusion Chromatography-based isolation minimally alters Extracellular Vesicles’ characteristics compared to precipitating agents. Sci Rep 2016;6:33641. https://doi.org/10.1038/srep33641 . DOI
Paolini, L, Zendrini, A, Di Noto, G, Busatto, S, Lottini, E, Radeghieri, A, et al.. Residual matrix from different separation techniques impacts exosome biological activity. Sci Rep 2016;6:23550. https://doi.org/10.1038/srep23550 . DOI
Tellez-Gabriel, M, Heymann, D. Exosomal lncRNAs: the newest promising liquid biopsy. Cancer Drug Resist 2019;2:1002–17. https://doi.org/10.20517/cdr.2019.69 . DOI
Lötvall, J, Hill, AF, Hochberg, F, Buzás, EI, Vizio, DD, Gardiner, C, et al.. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J Extracell Vesicles 2014;3:26913. https://doi.org/10.3402/jev.v3.26913 . DOI
Eldh, M, Lötvall, J, Malmhäll, C, Ekström, K. Importance of RNA isolation methods for analysis of exosomal RNA: evaluation of different methods. Mol Immunol 2012;50:278–86. https://doi.org/10.1016/j.molimm.2012.02.001 . DOI
Tang, Y-T, Huang, Y-Y, Zheng, L, Qin, S-H, Xu, X-P, An, T-X, et al.. Comparison of isolation methods of exosomes and exosomal RNA from cell culture medium and serum. Int J Mol Med 2017;40:834–44. https://doi.org/10.3892/ijmm.2017.3080 . DOI
Wu, Y, Wang, Y, Wei, M, Han, X, Xu, T, Cui, M. Advances in the study of exosomal lncRNAs in tumors and the selection of research methods. Biomed Pharmacother 2020;123:109716. https://doi.org/10.1016/j.biopha.2019.109716 . DOI
An, M, Wu, J, Zhu, J, Lubman, DM. Comparison of an optimized ultracentrifugation method versus size-exclusion chromatography for isolation of exosomes from human serum. J Proteome Res 2018;17:3599–605. https://doi.org/10.1021/acs.jproteome.8b00479 . DOI
Andreu, Z, Rivas, E, Sanguino-Pascual, A, Lamana, A, Marazuela, M, González-Alvaro, I, et al.. Comparative analysis of EV isolation procedures for miRNAs detection in serum samples. J Extracell Vesicles 2016;5:31655. https://doi.org/10.3402/jev.v5.31655 . DOI
Baranyai, T, Herczeg, K, Onódi, Z, Voszka, I, Módos, K, Marton, N, et al.. Isolation of exosomes from blood plasma: qualitative and quantitative comparison of ultracentrifugation and size exclusion chromatography methods. PLoS One 2015;10:e0145686. https://doi.org/10.1371/journal.pone.0145686 . DOI
Helwa, I, Cai, J, Drewry, MD, Zimmerman, A, Dinkins, MB, Khaled, ML, et al.. A comparative study of serum exosome isolation using differential ultracentrifugation and three commercial reagents. PLoS One 2017;12:e0170628. https://doi.org/10.1371/journal.pone.0170628 . DOI
Crossland, RE, Norden, J, Bibby, LA, Davis, J, Dickinson, AM. Evaluation of optimal extracellular vesicle small RNA isolation and qRT-PCR normalisation for serum and urine. J Immunol Methods 2016;429:39–49. https://doi.org/10.1016/j.jim.2015.12.011 . DOI
Lobb, RJ, Becker, M, Wen Wen, S, Wong, CSF, Wiegmans, AP, Leimgruber, A, et al.. Optimized exosome isolation protocol for cell culture supernatant and human plasma. J Extracell Vesicles 2015;4:27031. https://doi.org/10.3402/jev.v4.27031 . DOI
Patel, GK, Khan, MA, Zubair, H, Srivastava, SK, Khushman, M, Singh, S, et al.. Comparative analysis of exosome isolation methods using culture supernatant for optimum yield, purity and downstream applications. Sci Rep 2019;9:5335. https://doi.org/10.1038/s41598-019-41800-2 . DOI
Prendergast, EN, de Souza Fonseca, MA, Dezem, FS, Lester, J, Karlan, BY, Noushmehr, H, et al.. Optimizing exosomal RNA isolation for RNA-Seq analyses of archival sera specimens. PLoS One 2018;13:e0196913. https://doi.org/10.1371/journal.pone.0196913 . DOI
Rekker, K, Saare, M, Roost, AM, Kubo, A-L, Zarovni, N, Chiesi, A, et al.. Comparison of serum exosome isolation methods for microRNA profiling. Clin Biochem 2014;47:135–8. https://doi.org/10.1016/j.clinbiochem.2013.10.020 . DOI
Stranska, R, Gysbrechts, L, Wouters, J, Vermeersch, P, Bloch, K, Dierickx, D, et al.. Comparison of membrane affinity-based method with size-exclusion chromatography for isolation of exosome-like vesicles from human plasma. J Transl Med 2018;16:1. https://doi.org/10.1186/s12967-017-1374-6 . DOI
Serrano-Pertierra, E, Oliveira-Rodríguez, M, Rivas, M, Oliva, P, Villafani, J, Navarro, A, et al.. Characterization of plasma-derived extracellular vesicles isolated by different methods: a comparison study. Bioengineering 2019;6:8. https://doi.org/10.3390/bioengineering6010008 . DOI
Kauffmann, A, Gentleman, R, Huber, W. arrayQualityMetrics—a bioconductor package for quality assessment of microarray data. Bioinformatics 2009;25:415–6. https://doi.org/10.1093/bioinformatics/btn647 . DOI
Liu, G, Loraine, AE, Shigeta, R, Cline, M, Cheng, J, Valmeekam, V, et al.. NetAffx: Affymetrix probesets and annotations. Nucleic Acids Res 2003;31:82–6. https://doi.org/10.1093/nar/gkg121 . DOI
Johnson, M, Zaretskaya, I, Raytselis, Y, Merezhuk, Y, McGinnis, S, Madden, TL. NCBI blast: a better web interface. Nucleic Acids Res 2008;36:W5–9. https://doi.org/10.1093/nar/gkn201 . DOI
Todoerti, K, Ronchetti, D, Manzoni, M, Taiana, E, Neri, A, Agnelli, L. Bioinformatics pipeline to analyze lncRNA arrays. Methods Mol Biol 2021;2348:45–53. https://doi.org/10.1007/978-1-0716-1581-2_3 . DOI
Théry, C, Witwer, KW, Aikawa, E, Alcaraz, MJ, Anderson, JD, Andriantsitohaina, R, et al.. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 2018;7:1535750. https://doi.org/10.1080/20013078.2018.1535750 . DOI
Ng, CT, Azwar, S, Yip, WK, Sham, SYZ, Jabar, MF, Sahak, NH, et al.. Isolation and identification of long non-coding RNAs in exosomes derived from the serum of colorectal carcinoma patients. Biology 2021;10:918. https://doi.org/10.3390/biology10090918 . DOI
Zeringer, E, Li, M, Barta, T, Schageman, J, Pedersen, KW, Neurauter, A, et al.. Methods for the extraction and RNA profiling of exosomes. World J Methodol 2013;3:11–8. https://doi.org/10.5662/wjm.v3.i1.11 . DOI
Xu, J, Xiao, Y, Liu, B, Pan, S, Liu, Q, Shan, Y, et al.. Exosomal MALAT1 sponges miR-26a/26b to promote the invasion and metastasis of colorectal cancer via FUT4 enhanced fucosylation and PI3K/Akt pathway. J Exp Clin Cancer Res 2020;39:54. https://doi.org/10.1186/s13046-020-01562-6 . DOI
Singh, AD, Patnam, S, Koyyada, R, Samal, R, Alvi, SB, Satyanaryana, G, et al.. Identifying stable reference genes in polyethene glycol precipitated urinary extracellular vesicles for RT-qPCR-based gene expression studies in renal graft dysfunction patients. Transpl Immunol 2022;75:101715. https://doi.org/10.1016/j.trim.2022.101715 . DOI
Ludwig, N, Whiteside, TL, Reichert, TE. Challenges in exosome isolation and analysis in health and disease. Int J Mol Sci 2019;20:4684. https://doi.org/10.3390/ijms20194684 . DOI
Yang, D, Zhang, W, Zhang, H, Zhang, F, Chen, L, Ma, L, et al.. Progress, opportunity, and perspective on exosome isolation – efforts for efficient exosome-based theranostics. Theranostics 2020;10:3684. https://doi.org/10.7150/thno.41580 . DOI
Doyle, LM, Wang, MZ. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells 2019;8:727. https://doi.org/10.3390/cells8070727 . DOI
Budden, CF, Gearing, LJ, Kaiser, R, Standke, L, Hertzog, PJ, Latz, E. Inflammasome-induced extracellular vesicles harbour distinct RNA signatures and alter bystander macrophage responses. J Extracell Vesicles 2021;10:e12127. https://doi.org/10.1002/jev2.12127 . DOI
Luan, Y, Li, X, Luan, Y, Zhao, R, Li, Y, Liu, L, et al.. Circulating lncRNA UCA1 promotes malignancy of colorectal cancer via the miR-143/MYO6 Axis. Mol Ther Nucleic Acids 2019;19:790–803. https://doi.org/10.1016/j.omtn.2019.12.009 . DOI
Hu, D, Zhan, Y, Zhu, K, Bai, M, Han, J, Si, Y, et al.. Plasma exosomal long non-coding RNAs serve as biomarkers for early detection of colorectal cancer. Chem Pharm Bull 2018;51:2704–15. https://doi.org/10.1159/000495961 . DOI
Singh, K, Nalabotala, R, Koo, KM, Bose, S, Nayak, R, Shiddiky, MJA. Separation of distinct exosome subpopulations: isolation and characterization approaches and their associated challenges. Analyst 2021;146:3731–49. https://doi.org/10.1039/d1an00024a . DOI
Tkach, M, Kowal, J, Théry, C. Why the need and how to approach the functional diversity of extracellular vesicles. Philos Trans R Soc Lond B Biol Sci 2018;373:20160479. https://doi.org/10.1098/rstb.2016.0479 . DOI
Raghavan, KS, Francescone, R, Franco-Barraza, J, Gardiner, JC, Vendramini-Costa, DB, Luong, T, et al.. NetrinG1+ cancer-associated fibroblasts generate unique extracellular vesicles that support the survival of pancreatic cancer cells under nutritional stress. Cancer Res Commun 2022;2:1017–36. https://doi.org/10.1158/2767-9764.crc-21-0147 . DOI
Mimmi, S, Zimbo, AM, Rotundo, S, Cione, E, Nisticò, N, Aloisio, A, et al.. SARS CoV-2 spike protein-guided exosome isolation facilitates detection of potential miRNA biomarkers in COVID-19 infections. Clin Chem Lab Med 2023;61:1518–24. https://doi.org/10.1515/cclm-2022-1286 . DOI
Crescitelli, R, Lässer, C, Lötvall, J. Isolation and characterization of extracellular vesicle subpopulations from tissues. Nat Protoc 2021;16:1548–80. https://doi.org/10.1038/s41596-020-00466-1 . DOI
Maisano, D, Mimmi, S, Dattilo, V, Marino, F, Gentile, M, Vecchio, E, et al.. A novel phage display based platform for exosome diversity characterization. Nanoscale 2022;14:2998–3003. https://doi.org/10.1039/d1nr06804k . DOI