The Role of ARHGAP1 in Rho GTPase Inactivation during Metastasizing of Breast Cancer Cell Line MCF-7 after Treatment with Doxorubicin
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
ITMS: 313011AUB1
The Ministry of Education, Science, Research and Sport of the Slovak Republic
PubMed
37511111
PubMed Central
PMC10379778
DOI
10.3390/ijms241411352
PII: ijms241411352
Knihovny.cz E-resources
- Keywords
- breast cancer, cell adhesion, doxorubicin, mass spectrometry, metastases, proteomics,
- MeSH
- cdc42 GTP-Binding Protein metabolism MeSH
- Doxorubicin pharmacology MeSH
- Humans MeSH
- MCF-7 Cells MeSH
- Breast Neoplasms * drug therapy MeSH
- GTPase-Activating Proteins * metabolism MeSH
- Proteomics MeSH
- rac1 GTP-Binding Protein metabolism MeSH
- rho GTP-Binding Proteins * metabolism MeSH
- rhoA GTP-Binding Protein metabolism MeSH
- Check Tag
- Humans MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- ARHGAP1 protein, human MeSH Browser
- cdc42 GTP-Binding Protein MeSH
- Doxorubicin MeSH
- GTPase-Activating Proteins * MeSH
- rac1 GTP-Binding Protein MeSH
- rho GTP-Binding Proteins * MeSH
- rhoA GTP-Binding Protein MeSH
Breast cancer is the most prevalent cancer type in women worldwide. It proliferates rapidly and can metastasize into farther tissues at any stage due to the gradual invasiveness and motility of the tumor cells. These crucial properties are the outcome of the weakened intercellular adhesion, regulated by small guanosine triphosphatases (GTPases), which hydrolyze to the guanosine diphosphate (GDP)-bound conformation. We investigated the inactivating effect of ARHGAP1 on Rho GTPases involved signaling pathways after treatment with a high dose of doxorubicin. Label-free quantitative proteomic analysis of the proteome isolated from the MCF-7 breast cancer cell line, treated with 1 μM of doxorubicin, identified RAC1, CDC42, and RHOA GTPases that were inactivated by the ARHGAP1 protein. Upregulation of the GTPases involved in the transforming growth factor-beta (TGF-beta) signaling pathway initiated epithelial-mesenchymal transitions. These findings demonstrate a key role of the ARHGAP1 protein in the disruption of the cell adhesion and simultaneously allow for a better understanding of the molecular mechanism of the reduced cell adhesion leading to the subsequent metastasis. The conclusions of this study corroborate the hypothesis that chemotherapy with doxorubicin may increase the risk of metastases in drug-resistant breast cancer cells.
See more in PubMed
Siegel R.L., Miller K.D., Wagle N.S., Jemal A. Cancer statistics 2023. CA Cancer J. Clin. 2023;73:17–48. doi: 10.3322/caac.21763. PubMed DOI
Buyuk B., Jin S., Ye K. Epithelial-to-Mesenchymal Transition Signalling Pathways Responsible for Breast Cancer Metastasis. Cel. Mol. Bioeng. 2022;15:1–13. doi: 10.1007/s12195-021-00694-9. PubMed DOI PMC
Huang Z., Zhang Z., Zhou C.h., Liu L., Huang C. Epithelial–mesenchymal transition: The history, regulatory mechanism, and cancer therapeutic opportunities. MedComm. 2022;3:e144. doi: 10.1002/mco2.144. PubMed DOI PMC
Gooding A., Schiemann W.P. Epithelial–Mesenchymal Transition Programs and Cancer Stem Cell Phenotypes: Mediators of Breast Cancer Therapy Resistance. Mol. Cancer Res. 2020;18:1257–1270. doi: 10.1158/1541-7786.MCR-20-0067. PubMed DOI PMC
Crosas-Molist E., Samain R., Kohlhammer L., Orgaz J.L., George S.L., Maiques O., Barcelo J., Sanz-Moreno V. Rho GTPase Signaling in Cancer Preogression and Dissemination. Physiol. Rev. 2022;102:455–510. doi: 10.1152/physrev.00045.2020. PubMed DOI
Song S., Cong W., Zhou S., Shi Y., Dai W., Zhang H., Wang X., He B., Zhang Q. Small GTPases: Structure, biological function and its interaction with nanoparticles. Asian J. Pharm. Sci. 2019;14:30–39. doi: 10.1016/j.ajps.2018.06.004. PubMed DOI PMC
Aspenström P. Activated Rho GTPases in Cancer—The Beginning of a New Paradigm. Int. J. Mol. Sci. 2018;19:3949. doi: 10.3390/ijms19123949. PubMed DOI PMC
Mondal S., Hsiao K., Goueli S.A. A Homogenous Bioluminescent System for Measuring GTPase, GTPase Activating Protein, and Guanine Nucleotide Exchange Factor Activities. Drug Develop. Technolog. 2015;13:444–455. doi: 10.1089/adt.2015.643. PubMed DOI PMC
Etienne-Manneville S., Hall A. Rho GTPases in cell biology. Nature. 2002;420:629–635. doi: 10.1038/nature01148. PubMed DOI
Ahn Y.H., Gibbons D.L., Chakravarti D., Creighton C.J., Rizvi Z.H., Adams H.P., Pertsemlidis A., Gregory P.A., Wright J.A., Goodall G.J., et al. ZEB1 drives prometastatic actin cytoskeletal remodeling by downregulating {miR}-34a expression. J. Clin. Investig. 2012;122:3170–3183. doi: 10.1172/JCI63608. PubMed DOI PMC
Clay M.R., Halloran M.C. Rho activation is apically restricted by Arhgap1 in neural crest cells and drives epithelial-to-mesenchymal transition. Development. 2013;140:3198–3209. doi: 10.1242/dev.095448. PubMed DOI PMC
He H., Huang J., Wu S., Jiang S., Liang L., Liu Y., Liu W., Xie L., Tao Y., Cong L. The roles of GTPase-activating proteins in regulated cell death and tumor immunity. J. Hematol. Oncol. 2021;14:2–15. doi: 10.1186/s13045-021-01184-1. PubMed DOI PMC
Hollier B.G., Evans K., Mani S.A. The Epithelial-to-Mesenchymal Transition and Cancer Stem Cells: A Coalition against Cancer Therapies. J. Mammary Gland Biol. Neoplasia. 2009;14:29–43. doi: 10.1007/s10911-009-9110-3. PubMed DOI
Hartsock A., Nelson W.J. Adherens and tight junctions: Structure, function and connections to the actin cytoskeleton. Biochim Biophys Acta Biomembr. 2008;1778:660–669. doi: 10.1016/j.bbamem.2007.07.012. PubMed DOI PMC
Fukata M., Kaibuchi K. Rho-family GTPases in cadherin-mediated cell-cell adhesion. Nat. Rev. Mol. Cell Biol. 2001;2:887–897. doi: 10.1038/35103068. PubMed DOI
Kalluri R., Weinberg R.A. The basics of epithelial-mesenchymal transition. J. Clin. Investig. 2009;119:1420–1428. doi: 10.1172/JCI39104. PubMed DOI PMC
Voulgari A., Pintzas A. Epithelial-mesenchymal transition in cancer metastasis: Mechanisms, markers and strategies to overcome drug resistance in the clinic. Biochim. Biophys. Acta Rev. Cancer. 2009;1796:75–90. doi: 10.1016/j.bbcan.2009.03.002. PubMed DOI
Zöller M. CD44: Can a cancer-initiating cell profit from an abundantly expressed molecule? Nat. Rev. Cancer. 2011;11:254–267. doi: 10.1038/nrc3023. PubMed DOI
Leon G., MacDonagh L., Finn S.P., Cuffe S., Barr M.P. Cancer stem cells in drug resistant lung cancer: Targeting cell surface markers and signalling pathways. Pharmacol. Ther. 2016;158:71–90. doi: 10.1016/j.pharmthera.2015.12.001. PubMed DOI
Wu Y., Sarkissyan M., Vadgama J.V. Epithelial-Mesenchymal Transition and Breast Cancer. J. Clin. Med. 2016;5:13. doi: 10.3390/jcm5020013. PubMed DOI PMC
Tsou S.H., Chen T.M., Hsiao H.T., Chen Y.H. A critical dose of doxorubicin is required to alter the gene expression profiles in MCF-7 cells acquiring multidrug resistance. PLoS ONE. 2015;10:e0116747. doi: 10.1371/journal.pone.0116747. PubMed DOI PMC
Cha H.K., Cheon S., Kim H., Lee K.-M., Ryu H.S., Han D. Discovery of Proteins Responsible for Resistance to Three Chemotherapy Drugs in Breast Cancer Cells Using Proteomics and Bioinformatics Analysis. Molecules. 2022;27:1762. doi: 10.3390/molecules27061762. PubMed DOI PMC
Dorland J.M. Variable Response to Chemotherapeutics by a Subpopulation of MCF—7 Breast Cancer Cells. Honor. Theses. 2016. [(accessed on 7 July 2023)]. pp. 1–39. Available online: http://hdl.handle.net/2152/37808.
Rivankar S. An overview of doxorubicin formulations in cancer therapy. J. Cancer Res. Therap. 2014;10:853–858. doi: 10.4103/0973-1482.139267. PubMed DOI
Ujah G.A., Nna V.U., Suleiman J.B., Eleazu C., Nwokocha C., Rebene J.A., Imowo M.U., Obi E.O., Amachree C., Udechukwu E.C., et al. Tert-butylhydroquinone attenuates doxorubicin-induced dysregulation of testicular cytoprotective and steroidogenic genes, and improves spermatogenesis in rats. Sci. Rep. 2021;11:5522. doi: 10.1038/s41598-021-85026-7. PubMed DOI PMC
Fornari F.A., Randolph J.K., Yalowich J.C., Ritke M.K., Gewirtz D.A. Interference by doxorubicin with DNA unwinding in MCF-7 breast tumor cells. Mol. Pharmacol. 1994;45:649–656. PubMed
Shin D., Park J., Han D., Moon J.H., Ryu H.S., Kim Y. Identification of TUBB2A by quantitative proteomic analysis as a novel biomarker for the prediction of distant metastatic breast cancer. Clin. Proteom. 2020;17:16. doi: 10.1186/s12014-020-09280-z. PubMed DOI PMC
Vasilogianni A.M., Al-Majdoub Z.M., Achour B., Annie Peters S., Barber J., Rostami-Hodjegan A. Quantitative Proteomics of Hepatic Drug-Metabolizing Enzymes and Transporters in Patients with Colorectal Cancer Metastasis. Clin. Pharmacol. Ther. 2022;112:699–710. doi: 10.1002/cpt.2633. PubMed DOI PMC
Santos A., Colaço A.R., Nielsen A.B., Niu L., Strauss M., Geyer P.E., Coscia F., Albrechtsen N.J.W., Mundt F., Jensen L.J., et al. A knowledge graph to interpret clinical proteomics data. Nat. Biotechnol. 2022;40:692–702. doi: 10.1038/s41587-021-01145-6. PubMed DOI PMC
Lyons S.M., Alizadeh E., Mannheimer J., Schuamberg K., Castle J., Schroder B., Turk P., Thamm D., Prasad A. Changes in cell shape are correlated with metastatic potential in murine and human osteosarcomas. Biol. Open. 2016;12:289–299. doi: 10.1242/bio.013409. PubMed DOI PMC
Agnihotri N., Kumar S., Mehta K. Tissue transglutaminase as a central mediator in inflammation-induced progression of breast cancer. Breast Cancer Res. 2013;15:202. doi: 10.1186/bcr3371. PubMed DOI PMC
Gong X., An Z., Wang Y., Guan L., Fang W., Strömblad S., Jiang Y., Zhang H. Kindlin-2 controls sensitivity of prostate cancer cells to cisplatin-induced cell death. Cancer Lett. 2010;299:54–62. doi: 10.1016/j.canlet.2010.08.003. PubMed DOI
Guttilla I.K., Phoenix K.N., Hong X., Tirnauer J.S., Claffey K.P., White B.A. Prolonged mammosphere culture of MCF-7 cells induces an EMT and repression of the estrogen receptor by microRNAs. Breast Cancer Res. Treat. 2011;132:75–85. doi: 10.1007/s10549-011-1534-y. PubMed DOI
Schlienger S., Campbell S., Pasquin S., Gaboury L., Claing A. ADP-ribosylation factor 1 expression regulates epithelial-mesenchymal transition and predicts poor clinical outcome in triple-negative breast cancer. Oncotarget. 2016;7:15811–15827. doi: 10.18632/oncotarget.7515. PubMed DOI PMC
Yu Y., Wu J., Wang Y., Zhao T., Ma B., Liu Y., Fang W., Zhu W.G., Zhang H. Kindlin 2 forms a transcriptional complex with β-catenin and TCF4 to enhance Wnt signaling. EMBO Rep. 2012;13:750–758. doi: 10.1038/embor.2012.88. PubMed DOI PMC
Pakala S.B., Singh K., Reddy S.D.N., Ohshiro K., Li D.Q., Mishra L., Kumar R. TGF-β1 signaling targets metastasis-associated protein 1, a new effector in epithelial cells. Oncogene. 2011;3:2230–2241. doi: 10.1038/onc.2010.608. PubMed DOI PMC
Liu S., Cong Y., Wang D., Sun Y., Deng L., Liu Y., Martin-Trevino R., Shang L., McDermott S.P., Landis M.D., et al. Breast cancer stem cells transition between epithelial and mesenchymal states reflective of their normal counterparts. Stem. Cell Rep. 2014;2:78–91. doi: 10.1016/j.stemcr.2013.11.009. PubMed DOI PMC
Thomson S., Petti F., Sujka-Kwok I., Mercado P., Bean J., Monaghan M., Seymour S.L., Argast G.M., Epstein D.M. A systems view of epithelial mesenchymal-transition signaling states. Clin. Exp. Metastasis. 2010;28:137–155. doi: 10.1007/s10585-010-9367-3. PubMed DOI PMC
Mizuuchi Y., Aishima S., Ohuchida K., Shindo K., Fujino M., Hattori M., Miyazaki T., Mizumoto K., Tanaka M., Oda Y. Anterior gradient 2 downregulation in a subset of pancreatic ductal adenocarcinoma is a prognostic factor indicative of epithelial-mesenchymal transition. Lab. Investig. 2015;95:193–206. doi: 10.1038/labinvest.2014.138. PubMed DOI
Ma S.R., Wang W.M., Huang C.F., Zhang W.F., Sun Z.J. Anterior gradient protein 2 expression in high grade head and neck squamous cell carcinoma correlated with cancer stem cell and epithelial mesenchymal transition. Oncotarget. 2015;6:8807–8821. doi: 10.18632/oncotarget.3556. PubMed DOI PMC
Hodge R.G., Ridley A.J. Regulating Rho GTPases and their regulators. Nat. Rev. Mol. Cell Biol. 2016;17:496–510. doi: 10.1038/nrm.2016.67. PubMed DOI
Cherfils J., Zeghouf M. Regulation of Small GTPases by GEFs, GAPs, and GDIs. Physiol. Rev. 2013;93:269–309. doi: 10.1152/physrev.00003.2012. PubMed DOI
Sun Z., Zhou D., Yang J., Zhang D. Doxorubicin promotes breast cancer cell migration and invasion via DCAF13. FEBS Open Bio. 2022;12:221–230. doi: 10.1002/2211-5463.13330. PubMed DOI PMC
Shan B.Q., Wang X.M., Zheng L., Han Y., Gao J., Lv M.-D., Zhang Y., Liu Y.-X., Zhang H., Chen H.-S., et al. DCAF13 promotes breast cancer cell proliferation by ubiquitin inhibiting PERP expression. Cancer Sci. 2022;113:1587–1600. doi: 10.1111/cas.15300. PubMed DOI PMC
Fukata M., Kuroda S., Nakagawa M., Kawajiri A., Itoh N., Shoji I., Matsuura Y., Yonehara S., Fujisawa H., Kikuchi A., et al. Cdc42 and Rac1 regulate the interaction of IQGAP1 with beta-catenin. J. Biol. Chem. 1999;274:26044–26050. doi: 10.1074/jbc.274.37.26044. PubMed DOI
Kuroda S., Fukata M., Nakagawa M., Fujii K., Nakamura T., Ookubo T., Izawa I., Nagase T., Nomura N., Tani H., et al. Role of IQGAP1, a target of the small GTPases Cdc42 and Rac1, in regulation of E-cadherin mediated cell-cell adhesion. Science. 1998;281:832–835. doi: 10.1126/science.281.5378.832. PubMed DOI
Kaibuchi K., Kuroda S., Amano M. Regulation of the cytoskeleton and cell adhesion by the Rho family GTPases in mammalian cells. Annu. Rev. Biochem. 1999;68:459–486. doi: 10.1146/annurev.biochem.68.1.459. PubMed DOI
Keirsebilck A., Bonné S., Staes K., van Hengel J., Nollet F., Reynolds A., van Roy F. Molecular Cloning of the Human p120ctnCatenin Gene (CTNND1): Expression of Multiple Alternatively Spliced Isoforms. Genomics. 1998;50:129–146. doi: 10.1006/geno.1998.5325. PubMed DOI
Anastasiadis P.Z., Reynolds A.B. The p120 catenin family: Complex roles in adhesion, signaling and cancer. J. Cell Sci. 2000;113:1319–1334. doi: 10.1242/jcs.113.8.1319. PubMed DOI
Grosheva I., Shtutman M., Elbaum M., Bershadsky D. p120 catenin affects cell motility via modulation of activity of Rho-family GTPases: A link between cell-cell contact formation and regulation of cell locomotion. J. Cell Sci. 2001;114:695–707. doi: 10.1242/jcs.114.4.695. PubMed DOI
Thoreson M.A., Anastasiadis P.Z., Daniel J.M., Ireton R.C., Wheelock M.J., Johnson K.R., Hummingbird D.K., Albert B. Reynolds Selective uncoupling of p120(ctn) from E-cadherin disrupts strong adhesion. J. Cell Biol. 2000;148:189–201. doi: 10.1083/jcb.148.1.189. PubMed DOI PMC
Bellovin D.I., Bates R.C., Muzikansky A., Rimm D.L., Mercurio A.M. Altered localization of p120 catenin during epithelial to mesenchymal transition of colon carcinoma is prognostic for aggressive disease. Cancer Res. 2005;65:10938–10945. doi: 10.1158/0008-5472.CAN-05-1947. PubMed DOI
Nagaraj N.S., Datta P.K. Targetting the Transforming Growth factor-beta Signalling Pathway in Human Cancer. Expert Opin. Investig. Drugs. 2010;5:557–577. doi: 10.1517/13543780903382609. PubMed DOI PMC
Bhowmick N.A., Ghiassi M., Bakin A., Aakre M., Lundquist C.A., Engel M.E., Arteaga C.L. Transforming growth factor-beta1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol. Biol. Cell. 2001;12:27–36. doi: 10.1091/mbc.12.1.27. PubMed DOI PMC
Edlund S. Transforming growth factor-beta-induced mobilization of actin cytoskeleton requires signaling by small GTPases Cdc42 and RhoA. Mol. Biol. Cell. 2002;13:902–914. doi: 10.1091/mbc.01-08-0398. PubMed DOI PMC
Nobes C.D., Hall A.R. Rac, and Cdc42 GTPases Regulate the Assembly of Multimolecular Focal Complexes Associated with Actin Stress Fibers, Lamellipodia, and Filopodia. Cell. 1995;81:53–62. doi: 10.1016/0092-8674(95)90370-4. PubMed DOI