Magneto-Responsive Textiles for Non-Invasive Heating
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
2019/35/N/ST5/00402
National Science Center
2019/33/B/ST5/00935
National Science Center
PubMed
37511504
PubMed Central
PMC10380502
DOI
10.3390/ijms241411744
PII: ijms241411744
Knihovny.cz E-resources
- Keywords
- magnetic hyperthermia, magnetic nanoparticles, magnetic textiles, smart materials, tissue-mimicking phantom,
- MeSH
- Hyperthermia, Induced * MeSH
- Magnetics MeSH
- Textiles MeSH
- Hot Temperature MeSH
- Heating * MeSH
- Publication type
- Journal Article MeSH
Magneto-responsive textiles have emerged lately as an important carrier in various fields, including biomedical engineering. To date, most research has been performed on single magnetic fibers and focused mainly on the physical characterization of magnetic textiles. Herein, from simple woven and non-woven textiles we engineered materials with magnetic properties that can become potential candidates for a smart magnetic platform for heating treatments. Experiments were performed on tissue-mimicking materials to test the textiles' heating efficiency in the site of interest. When the heat was induced with magneto-responsive textiles, the temperature increase in tissue-mimicking phantoms depended on several factors, such as the type of basic textile material, the concentration of magnetic nanoparticles deposited on the textile's surface, and the number of layers covering the phantom. The values of temperature elevation, achieved with the use of magnetic textiles, are sufficient for potential application in magnetic hyperthermia therapies and as heating patches or bandages.
See more in PubMed
Choudhry N.A., Arnold L., Rasheed A., Khan I.A., Wang L. Textronics-A Review of Textile-Based Wearable Electronics. Adv. Eng. Mater. 2021;23:2100469. doi: 10.1002/adem.202100469. DOI
Boncel S., Jędrysiak R.G., Czerw M., Kolanowska A., Blacha A.W., Imielski M., Jozwiak B., Dzida M.H., Greer H.F., Sobotnicki A. Paintable Carbon Nanotube Coating-Based Textronics for Sustained Holter-Type Electrocardiography. ACS Appl. Nano Mater. 2022;5:15762–15774. doi: 10.1021/acsanm.2c03904. PubMed DOI PMC
Liu X., Zhang Y., Wang Y., Zhu W., Li G., Ma X., Zhang Y., Chen S., Tiwari S., Shi K., et al. Comprehensive Understanding of Magnetic Hyperthermia for Improving Antitumor Therapeutic Efficacy. Theranostics. 2020;10:3793. doi: 10.7150/thno.40805. PubMed DOI PMC
Sanz B., Calatayud M.P., Torres T.E., Fanarraga M.L., Ibarra M.R., Goya G.F. Magnetic Hyperthermia Enhances Cell Toxicity with Respect to Exogenous Heating. Biomaterials. 2017;114:62–70. doi: 10.1016/j.biomaterials.2016.11.008. PubMed DOI
Altanerova U., Babincova M., Babinec P., Benejova K., Jakubechova J., Altanerova V., Zduriencikova M., Repiska V., Altaner C. Human Mesenchymal Stem Cell-Derived Iron Oxide Exosomes Allow Targeted Ablation of Tumor Cells via Magnetic Hyperthermia. Int. J. Nanomed. 2017;12:7923–7936. doi: 10.2147/IJN.S145096. PubMed DOI PMC
Rubia-Rodríguez I., Santana-Otero A., Spassov S., Tombácz E., Johansson C., De La Presa P., Teran F.J., Morales M.D.P., Veintemillas-Verdaguer S., Thanh N.T., et al. Whither Magnetic Hyperthermia? A Tentative Roadmap. Materials. 2021;14:706. doi: 10.3390/ma14040706. PubMed DOI PMC
Amarjargal A., Tijing L.D., Park C.H., Im I.T., Kim C.S. Controlled Assembly of Superparamagnetic Iron Oxide Nanoparticles on Electrospun PU Nanofibrous Membrane: A Novel Heat-Generating Substrate for Magnetic Hyperthermia Application. Eur. Polym. J. 2013;49:3796–3805. doi: 10.1016/j.eurpolymj.2013.08.026. DOI
Sasikala A.R.K., Unnithan A.R., Yun Y.H., Park C.H., Kim C.S. An Implantable Smart Magnetic Nanofiber Device for Endoscopic Hyperthermia Treatment and Tumor-Triggered Controlled Drug Release. Acta Biomater. 2016;31:122–133. doi: 10.1016/j.actbio.2015.12.015. PubMed DOI
Chen Y.H., Cheng C.H., Chang W.J., Lin Y.C., Lin F.H., Lin J.C. Studies of Magnetic Alginate-Based Electrospun Matrices Crosslinked with Different Methods for Potential Hyperthermia Treatment. Mater. Sci. Eng. C. 2016;62:338–349. doi: 10.1016/j.msec.2016.01.070. PubMed DOI
Kaczmarek K., Mrówczyński R., Hornowski T., Bielas R., Józefczak A. The Effect of Tissue-Mimicking Phantom Compressibility on Magnetic Hyperthermia. Nanomaterials. 2019;9:803. doi: 10.3390/nano9050803. PubMed DOI PMC
Józefczak A., Kaczmarek K., Bielas R. Magnetic Mediators for Ultrasound Theranostics. Theranostics. 2021;11:10091. doi: 10.7150/thno.62218. PubMed DOI PMC
GhavamiNejad A., Sasikala A.R.K., Unnithan A.R., Thomas R.G., Jeong Y.Y., Vatankhah-Varnoosfaderani M., Stadler F.J., Park C.H., Kim C.S. Mussel-Inspired Electrospun Smart Magnetic Nanofibers for Hyperthermic Chemotherapy. Adv. Funct. Mater. 2015;25:2867–2875. doi: 10.1002/adfm.201500389. DOI
Soares P.I., Romao J., Matos R., Silva J.C., Borges J.P. Design and Engineering of Magneto-Responsive Devices for Cancer Theranostics: Nano to Macro Perspective. Prog. Mater. Sci. 2021;116:100742. doi: 10.1016/j.pmatsci.2020.100742. DOI
Hadjianfar M., Semnani D., Varshosaz J. An Investigation on Polycaprolactone/Chitosan/Fe3O4 Nanofibrous Composite Used for Hyperthermia. Polym. Adv. Technol. 2019;30:2729–2741. doi: 10.1002/pat.4704. DOI
Song C., Wang X.X., Zhang J., Nie G.D., Luo W.L., Fu J., Ramakrishna S., Long Y.Z. Electric Field-Assisted In Situ Precise Deposition of Electrospun γ-Fe2O3/Polyurethane Nanofibers for Magnetic Hyperthermia. Nanoscale Res. Lett. 2018;13:273. doi: 10.1186/s11671-018-2707-y. PubMed DOI PMC
Mues B., Bauer B., Ortega J., Buhl E.M., Teller H., Gries T., Schmitz-Rode T., Slabu I. Assessing Hyperthermia Performance of Hybrid Textile Filaments: The impact of Different Heating Agents. J. Magn. Magn. Mater. 2021;519:167486. doi: 10.1016/j.jmmm.2020.167486. DOI
Molcan M., Safarik I., Pospiskova K., Paulovicova K., Timko M., Kopcansky P., Torma N. Magnetically Modified Electrospun Nanofibers for Hyperthermia Treatment. Ukr. J. Phys. 2020;65:655. doi: 10.15407/ujpe65.8.655. DOI
Matos R.J., Chaparro C.I., Silva J.C., Valente M.A., Borges J.P., Soares P.I. Electrospun Composite Cellulose Acetate/Iron Oxide Nanoparticles Non-Woven Membranes for Magnetic Hyperthermia Applications. Carbohydr. Polym. 2018;198:9–16. doi: 10.1016/j.carbpol.2018.06.048. PubMed DOI
Safarik I., Prochazkova J., Schroer M.A., Garamus V.M., Kopcansky P., Timko M., Rajnak M., Karpets M., Ivankov O.I., Avdeev M.V., et al. Cotton Textile/Iron Oxide Nanozyme Composites with Peroxidase-like Activity: Preparation, Characterization, and Application. ACS Appl. Mater. Interfaces. 2021;13:23627–23637. doi: 10.1021/acsami.1c02154. PubMed DOI
Kaczmarek K., Hornowski T., Antal I., Rajnak M., Timko M., Józefczak A. Sono-Magnetic Heating in Tumor Phantom. J. Magn. Magn. Mater. 2020;500:166396. doi: 10.1016/j.jmmm.2020.166396. DOI
Kalluri L., Duan Y. Role of Electrospun Nanofibers in Cancer Detection and Treatment. In: Chaughule R.S., Patkar D.P., Ramanujan R.V., editors. Nanomaterials for Cancer Detection Using Imaging Techniques and Their Clinical Applications. Springer International Publishing; Cham, Switzerland: 2022. pp. 261–275.
Saiding Q., Cui W. Functional Nanoparticles in Electrospun Fibers for Biomedical Applications. Nano Sel. 2022;3:999–1011. doi: 10.1002/nano.202100335. DOI
Shahidi S. Magnetic Nanoparticles Application in the Textile Industry—A Review. J. Ind. Text. 2021;50:970–989. doi: 10.1177/1528083719851852. DOI
Fuentes-García J.A., Sanz B., Mallada R., Ibarra M.R., Goya G.F. Magnetic Nanofibers for Remotely Triggered Catalytic Activity Applied to the Degradation of Organic Pollutants. Mater. Des. 2023;226:111615. doi: 10.1016/j.matdes.2023.111615. DOI
Jiraskova Y., Bursik J., Seidlerova J., Kutlakova K.M., Safarik I., Safarikova M., Pospiskova K., Zivotsky O. Microstructural Analysis and Magnetic Characterization of Native and Magnetically Modified Montmorillonite and Vermiculite. J. Nanomater. 2018;2018:3738106. doi: 10.1155/2018/3738106. DOI
Baldikova E., Politi D., Maderova Z., Pospiskova K., Sidiras D., Safarikova M., Safarik I. Utilization of Magnetically Responsive Cereal by-Product for Organic Dye Removal. J. Sci. Food Agric. 2016;96:2204–2214. doi: 10.1002/jsfa.7337. PubMed DOI
Kaczmarek K., Hornowski T., Kubovcikova M., Timko M., Koralewski M., Józefczak A. Heating Induced by Therapeutic Ultrasound in the Presence of Magnetic Nanoparticles. ACS Appl. Mater. Interfaces. 2018;10:11554–11564. doi: 10.1021/acsami.8b02496. PubMed DOI
Wullkopf L., West A.K.V., Leijnse N., Cox T.R., Madsen C.D., Oddershede L.B., Erler J.T. Cancer Cells’ Ability to Mechanically Adjust to Extracellular Matrix Stiffness Correlates with Their Invasive Potential. Mol. Biol. Cell. 2018;29:2378–2385. doi: 10.1091/mbc.E18-05-0319. PubMed DOI PMC
Lahiri B.B., Ranoo S., Philip J. Magnetic Hyperthermia Study in Water Based Magnetic Fluids Containing TMAOH Coated Fe3O4 Using Infrared Thermography. Infrared Phys. Technol. 2017;80:71–82. doi: 10.1016/j.infrared.2016.11.015. DOI
Anghel I., Grumezescu A.M., Andronescu E., Anghel A.G., Ficai A., Saviuc C., Grumezescu V., Vasile B.S., Chifiriuc M.C. Magnetite Nanoparticles for Functionalized Textile Dressing to Prevent Fungal Biofilms Development. Nanoscale Res. Lett. 2012;7:1–6. doi: 10.1186/1556-276X-7-501. PubMed DOI PMC
Szunerits S., Boukherroub R. Heat: A Highly Efficient Skin Enhancer for Transdermal Drug Delivery. Front. Bioeng. Biotechnol. 2018;6:15. doi: 10.3389/fbioe.2018.00015. PubMed DOI PMC