• This record comes from PubMed

Magneto-Responsive Textiles for Non-Invasive Heating

. 2023 Jul 21 ; 24 (14) : . [epub] 20230721

Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
2019/35/N/ST5/00402 National Science Center
2019/33/B/ST5/00935 National Science Center

Magneto-responsive textiles have emerged lately as an important carrier in various fields, including biomedical engineering. To date, most research has been performed on single magnetic fibers and focused mainly on the physical characterization of magnetic textiles. Herein, from simple woven and non-woven textiles we engineered materials with magnetic properties that can become potential candidates for a smart magnetic platform for heating treatments. Experiments were performed on tissue-mimicking materials to test the textiles' heating efficiency in the site of interest. When the heat was induced with magneto-responsive textiles, the temperature increase in tissue-mimicking phantoms depended on several factors, such as the type of basic textile material, the concentration of magnetic nanoparticles deposited on the textile's surface, and the number of layers covering the phantom. The values of temperature elevation, achieved with the use of magnetic textiles, are sufficient for potential application in magnetic hyperthermia therapies and as heating patches or bandages.

See more in PubMed

Choudhry N.A., Arnold L., Rasheed A., Khan I.A., Wang L. Textronics-A Review of Textile-Based Wearable Electronics. Adv. Eng. Mater. 2021;23:2100469. doi: 10.1002/adem.202100469. DOI

Boncel S., Jędrysiak R.G., Czerw M., Kolanowska A., Blacha A.W., Imielski M., Jozwiak B., Dzida M.H., Greer H.F., Sobotnicki A. Paintable Carbon Nanotube Coating-Based Textronics for Sustained Holter-Type Electrocardiography. ACS Appl. Nano Mater. 2022;5:15762–15774. doi: 10.1021/acsanm.2c03904. PubMed DOI PMC

Liu X., Zhang Y., Wang Y., Zhu W., Li G., Ma X., Zhang Y., Chen S., Tiwari S., Shi K., et al. Comprehensive Understanding of Magnetic Hyperthermia for Improving Antitumor Therapeutic Efficacy. Theranostics. 2020;10:3793. doi: 10.7150/thno.40805. PubMed DOI PMC

Sanz B., Calatayud M.P., Torres T.E., Fanarraga M.L., Ibarra M.R., Goya G.F. Magnetic Hyperthermia Enhances Cell Toxicity with Respect to Exogenous Heating. Biomaterials. 2017;114:62–70. doi: 10.1016/j.biomaterials.2016.11.008. PubMed DOI

Altanerova U., Babincova M., Babinec P., Benejova K., Jakubechova J., Altanerova V., Zduriencikova M., Repiska V., Altaner C. Human Mesenchymal Stem Cell-Derived Iron Oxide Exosomes Allow Targeted Ablation of Tumor Cells via Magnetic Hyperthermia. Int. J. Nanomed. 2017;12:7923–7936. doi: 10.2147/IJN.S145096. PubMed DOI PMC

Rubia-Rodríguez I., Santana-Otero A., Spassov S., Tombácz E., Johansson C., De La Presa P., Teran F.J., Morales M.D.P., Veintemillas-Verdaguer S., Thanh N.T., et al. Whither Magnetic Hyperthermia? A Tentative Roadmap. Materials. 2021;14:706. doi: 10.3390/ma14040706. PubMed DOI PMC

Amarjargal A., Tijing L.D., Park C.H., Im I.T., Kim C.S. Controlled Assembly of Superparamagnetic Iron Oxide Nanoparticles on Electrospun PU Nanofibrous Membrane: A Novel Heat-Generating Substrate for Magnetic Hyperthermia Application. Eur. Polym. J. 2013;49:3796–3805. doi: 10.1016/j.eurpolymj.2013.08.026. DOI

Sasikala A.R.K., Unnithan A.R., Yun Y.H., Park C.H., Kim C.S. An Implantable Smart Magnetic Nanofiber Device for Endoscopic Hyperthermia Treatment and Tumor-Triggered Controlled Drug Release. Acta Biomater. 2016;31:122–133. doi: 10.1016/j.actbio.2015.12.015. PubMed DOI

Chen Y.H., Cheng C.H., Chang W.J., Lin Y.C., Lin F.H., Lin J.C. Studies of Magnetic Alginate-Based Electrospun Matrices Crosslinked with Different Methods for Potential Hyperthermia Treatment. Mater. Sci. Eng. C. 2016;62:338–349. doi: 10.1016/j.msec.2016.01.070. PubMed DOI

Kaczmarek K., Mrówczyński R., Hornowski T., Bielas R., Józefczak A. The Effect of Tissue-Mimicking Phantom Compressibility on Magnetic Hyperthermia. Nanomaterials. 2019;9:803. doi: 10.3390/nano9050803. PubMed DOI PMC

Józefczak A., Kaczmarek K., Bielas R. Magnetic Mediators for Ultrasound Theranostics. Theranostics. 2021;11:10091. doi: 10.7150/thno.62218. PubMed DOI PMC

GhavamiNejad A., Sasikala A.R.K., Unnithan A.R., Thomas R.G., Jeong Y.Y., Vatankhah-Varnoosfaderani M., Stadler F.J., Park C.H., Kim C.S. Mussel-Inspired Electrospun Smart Magnetic Nanofibers for Hyperthermic Chemotherapy. Adv. Funct. Mater. 2015;25:2867–2875. doi: 10.1002/adfm.201500389. DOI

Soares P.I., Romao J., Matos R., Silva J.C., Borges J.P. Design and Engineering of Magneto-Responsive Devices for Cancer Theranostics: Nano to Macro Perspective. Prog. Mater. Sci. 2021;116:100742. doi: 10.1016/j.pmatsci.2020.100742. DOI

Hadjianfar M., Semnani D., Varshosaz J. An Investigation on Polycaprolactone/Chitosan/Fe3O4 Nanofibrous Composite Used for Hyperthermia. Polym. Adv. Technol. 2019;30:2729–2741. doi: 10.1002/pat.4704. DOI

Song C., Wang X.X., Zhang J., Nie G.D., Luo W.L., Fu J., Ramakrishna S., Long Y.Z. Electric Field-Assisted In Situ Precise Deposition of Electrospun γ-Fe2O3/Polyurethane Nanofibers for Magnetic Hyperthermia. Nanoscale Res. Lett. 2018;13:273. doi: 10.1186/s11671-018-2707-y. PubMed DOI PMC

Mues B., Bauer B., Ortega J., Buhl E.M., Teller H., Gries T., Schmitz-Rode T., Slabu I. Assessing Hyperthermia Performance of Hybrid Textile Filaments: The impact of Different Heating Agents. J. Magn. Magn. Mater. 2021;519:167486. doi: 10.1016/j.jmmm.2020.167486. DOI

Molcan M., Safarik I., Pospiskova K., Paulovicova K., Timko M., Kopcansky P., Torma N. Magnetically Modified Electrospun Nanofibers for Hyperthermia Treatment. Ukr. J. Phys. 2020;65:655. doi: 10.15407/ujpe65.8.655. DOI

Matos R.J., Chaparro C.I., Silva J.C., Valente M.A., Borges J.P., Soares P.I. Electrospun Composite Cellulose Acetate/Iron Oxide Nanoparticles Non-Woven Membranes for Magnetic Hyperthermia Applications. Carbohydr. Polym. 2018;198:9–16. doi: 10.1016/j.carbpol.2018.06.048. PubMed DOI

Safarik I., Prochazkova J., Schroer M.A., Garamus V.M., Kopcansky P., Timko M., Rajnak M., Karpets M., Ivankov O.I., Avdeev M.V., et al. Cotton Textile/Iron Oxide Nanozyme Composites with Peroxidase-like Activity: Preparation, Characterization, and Application. ACS Appl. Mater. Interfaces. 2021;13:23627–23637. doi: 10.1021/acsami.1c02154. PubMed DOI

Kaczmarek K., Hornowski T., Antal I., Rajnak M., Timko M., Józefczak A. Sono-Magnetic Heating in Tumor Phantom. J. Magn. Magn. Mater. 2020;500:166396. doi: 10.1016/j.jmmm.2020.166396. DOI

Kalluri L., Duan Y. Role of Electrospun Nanofibers in Cancer Detection and Treatment. In: Chaughule R.S., Patkar D.P., Ramanujan R.V., editors. Nanomaterials for Cancer Detection Using Imaging Techniques and Their Clinical Applications. Springer International Publishing; Cham, Switzerland: 2022. pp. 261–275.

Saiding Q., Cui W. Functional Nanoparticles in Electrospun Fibers for Biomedical Applications. Nano Sel. 2022;3:999–1011. doi: 10.1002/nano.202100335. DOI

Shahidi S. Magnetic Nanoparticles Application in the Textile Industry—A Review. J. Ind. Text. 2021;50:970–989. doi: 10.1177/1528083719851852. DOI

Fuentes-García J.A., Sanz B., Mallada R., Ibarra M.R., Goya G.F. Magnetic Nanofibers for Remotely Triggered Catalytic Activity Applied to the Degradation of Organic Pollutants. Mater. Des. 2023;226:111615. doi: 10.1016/j.matdes.2023.111615. DOI

Jiraskova Y., Bursik J., Seidlerova J., Kutlakova K.M., Safarik I., Safarikova M., Pospiskova K., Zivotsky O. Microstructural Analysis and Magnetic Characterization of Native and Magnetically Modified Montmorillonite and Vermiculite. J. Nanomater. 2018;2018:3738106. doi: 10.1155/2018/3738106. DOI

Baldikova E., Politi D., Maderova Z., Pospiskova K., Sidiras D., Safarikova M., Safarik I. Utilization of Magnetically Responsive Cereal by-Product for Organic Dye Removal. J. Sci. Food Agric. 2016;96:2204–2214. doi: 10.1002/jsfa.7337. PubMed DOI

Kaczmarek K., Hornowski T., Kubovcikova M., Timko M., Koralewski M., Józefczak A. Heating Induced by Therapeutic Ultrasound in the Presence of Magnetic Nanoparticles. ACS Appl. Mater. Interfaces. 2018;10:11554–11564. doi: 10.1021/acsami.8b02496. PubMed DOI

Wullkopf L., West A.K.V., Leijnse N., Cox T.R., Madsen C.D., Oddershede L.B., Erler J.T. Cancer Cells’ Ability to Mechanically Adjust to Extracellular Matrix Stiffness Correlates with Their Invasive Potential. Mol. Biol. Cell. 2018;29:2378–2385. doi: 10.1091/mbc.E18-05-0319. PubMed DOI PMC

Lahiri B.B., Ranoo S., Philip J. Magnetic Hyperthermia Study in Water Based Magnetic Fluids Containing TMAOH Coated Fe3O4 Using Infrared Thermography. Infrared Phys. Technol. 2017;80:71–82. doi: 10.1016/j.infrared.2016.11.015. DOI

Anghel I., Grumezescu A.M., Andronescu E., Anghel A.G., Ficai A., Saviuc C., Grumezescu V., Vasile B.S., Chifiriuc M.C. Magnetite Nanoparticles for Functionalized Textile Dressing to Prevent Fungal Biofilms Development. Nanoscale Res. Lett. 2012;7:1–6. doi: 10.1186/1556-276X-7-501. PubMed DOI PMC

Szunerits S., Boukherroub R. Heat: A Highly Efficient Skin Enhancer for Transdermal Drug Delivery. Front. Bioeng. Biotechnol. 2018;6:15. doi: 10.3389/fbioe.2018.00015. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...