16S rRNA gene primer choice impacts off-target amplification in human gastrointestinal tract biopsies and microbiome profiling
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
37537336
PubMed Central
PMC10400661
DOI
10.1038/s41598-023-39575-8
PII: 10.1038/s41598-023-39575-8
Knihovny.cz E-resources
- MeSH
- Biopsy MeSH
- Gastrointestinal Tract MeSH
- Genes, rRNA MeSH
- Humans MeSH
- Microbiota * genetics MeSH
- Reproducibility of Results MeSH
- RNA, Ribosomal, 16S genetics MeSH
- Sequence Analysis, DNA methods MeSH
- High-Throughput Nucleotide Sequencing methods MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- RNA, Ribosomal, 16S MeSH
16S rRNA amplicon sequencing or, more recently, metatranscriptomic analysis are currently the only preferred methods for microbial profiling of samples containing a predominant ratio of human to bacterial DNA. However, due to the off-target amplification of human DNA, current protocols are inadequate for bioptic samples. Here we present an efficient, reliable, and affordable method for the bacteriome analysis of clinical samples human DNA content predominates. We determined the microbiota profile in a total of 40 human biopsies of the esophagus, stomach, and duodenum using 16S rRNA amplicon sequencing with the widely used 515F-806R (V4) primers targeting the V4 region, 68F-338R primers and a modified set of 68F-338R (V1-V2M) primers targeting the V1-V2 region. With the V4 primers, on average 70% of amplicon sequence variants (ASV) mapped to the human genome. On the other hand, this off-target amplification was absent when using the V1-V2M primers. Moreover, the V1-V2M primers provided significantly higher taxonomic richness and reproducibility of analysis compared to the V4 primers. We conclude that the V1-V2M 16S rRNA sequencing method is reliable, cost-effective, and applicable for low-bacterial abundant human samples in medical research.
See more in PubMed
Gilbert J, et al. Current understanding of the human microbiome. Nat. Med. 2018;24:392–400. doi: 10.1038/nm.4517. PubMed DOI PMC
Berg G, et al. Microbiome definition re-visited: Old concepts and new challenges. Microbiome. 2020;8:103. doi: 10.1186/s40168-020-00875-0. PubMed DOI PMC
France MT, et al. Insight into the ecology of vaginal bacteria through integrative analyses of metagenomic and metatranscriptomic data. Genome Biol. 2022;23:66. doi: 10.1186/s13059-022-02635-9. PubMed DOI PMC
Pereira-Marques J, et al. Impact of host DNA and sequencing depth on the taxonomic resolution of whole metagenome sequencing for microbiome analysis. Front. Microbiol. 2019;10:1277. doi: 10.3389/fmicb.2019.01277. PubMed DOI PMC
Liu Y-X, et al. A practical guide to amplicon and metagenomic analysis of microbiome data. Protein Cell. 2021;12:315–330. doi: 10.1007/s13238-020-00724-8. PubMed DOI PMC
Johnson JS, et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat. Commun. 2019;10:5029. doi: 10.1038/s41467-019-13036-1. PubMed DOI PMC
Thompson LR, et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature. 2017;551:457–463. doi: 10.1038/nature24621. PubMed DOI PMC
Elliott DRF, Walker AW, O’Donovan M, Parkhill J, Fitzgerald RC. A non-endoscopic device to sample the oesophageal microbiota: A case-control study. Lancet Gastroenterol. Hepatol. 2016;2:32–42. doi: 10.1016/S2468-1253(16)30086-3. PubMed DOI PMC
Klindworth A, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41:e1. doi: 10.1093/nar/gks808. PubMed DOI PMC
Kameoka S, et al. Benchmark of 16S rRNA gene amplicon sequencing using Japanese gut microbiome data from the V1–V2 and V3–V4 primer sets. BMC Genom. 2021;22:527. doi: 10.1186/s12864-021-07746-4. PubMed DOI PMC
Heidrich V, et al. Choice of 16S ribosomal RNA primers impacts male urinary microbiota profiling. Front. Cell. Infect. Microbiol. 2022;12:862338. doi: 10.3389/fcimb.2022.862338. PubMed DOI PMC
Walker SP, et al. Non-specific amplification of human DNA is a major challenge for 16S rRNA gene sequence analysis. Sci. Rep. 2020;10:16356. doi: 10.1038/s41598-020-73403-7. PubMed DOI PMC
Dacey DP, Chain FJJ. Concatenation of paired-end reads improves taxonomic classification of amplicons for profiling microbial communities. BMC Bioinform. 2021;22:493. doi: 10.1186/s12859-021-04410-2. PubMed DOI PMC
Pichler M, et al. A 16S rRNA gene sequencing and analysis protocol for the Illumina MiniSeq platform. MicrobiologyOpen. 2018;7:e00611. doi: 10.1002/mbo3.611. PubMed DOI PMC
Van Dessel N, Swofford CA, Forbes NS. Potent and tumor specific: Arming bacteria with therapeutic proteins. Ther. Deliv. 2015;6:385–399. doi: 10.4155/tde.14.113. PubMed DOI PMC
McAllister SM, et al. Biodiversity and emerging biogeography of the neutrophilic iron-oxidizing zetaproteobacteria ▿. Appl. Environ. Microbiol. 2011;77:5445–5457. doi: 10.1128/AEM.00533-11. PubMed DOI PMC
Browne HP, et al. Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation. Nature. 2016;533:543–546. doi: 10.1038/nature17645. PubMed DOI PMC
Rajilic-Stojanovic M, et al. Systematic review: Gastric microbiota in health and disease. Aliment. Pharmacol. Ther. 2020;51:582–602. doi: 10.1111/apt.15650. PubMed DOI
Di Pilato V, et al. The esophageal microbiota in health and disease. Ann. N. Y. Acad. Sci. 2016;1381:21–33. doi: 10.1111/nyas.13127. PubMed DOI
Bik EM, et al. Molecular analysis of the bacterial microbiota in the human stomach. Proc. Natl. Acad. Sci. U. S. A. 2006;103:732–737. doi: 10.1073/pnas.0506655103. PubMed DOI PMC
Ruan W, Engevik MA, Spinler JK, Versalovic J. Healthy human gastrointestinal microbiome: Composition and function after a decade of exploration. Dig. Dis. Sci. 2020;65:695–705. doi: 10.1007/s10620-020-06118-4. PubMed DOI
Rajilić-Stojanović M, de Vos WM. The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol. Rev. 2014;38:996–1047. doi: 10.1111/1574-6976.12075. PubMed DOI PMC
Snider EJ, et al. Alterations to the esophageal microbiome associated with progression from Barrett’s esophagus to esophageal adenocarcinoma. Cancer Epidemiol. Biomark. Prev. 2019;28:1687–1693. doi: 10.1158/1055-9965.EPI-19-0008. PubMed DOI PMC
Laserna-Mendieta EJ, et al. Esophageal microbiome in active eosinophilic esophagitis and changes induced by different therapies. Sci. Rep. 2021;11:7113. doi: 10.1038/s41598-021-86464-z. PubMed DOI PMC
Lopetuso LR, et al. Esophageal microbiome signature in patients with Barrett’s esophagus and esophageal adenocarcinoma. PLoS ONE. 2020;15:e0231789. doi: 10.1371/journal.pone.0231789. PubMed DOI PMC
Li, D. et al. Characterization of the esophageal microbiota and prediction of the metabolic pathways involved in esophageal cancer. Front. Cell. Infect. Microbiol.10, (2020). PubMed PMC
Lv J, et al. Alteration of the esophageal microbiota in Barrett’s esophagus and esophageal adenocarcinoma. World J. Gastroenterol. 2019;25:2149–2161. doi: 10.3748/wjg.v25.i18.2149. PubMed DOI PMC
Wang Z-K, Yang Y-S. Upper gastrointestinal microbiota and digestive diseases. World J. Gastroenterol. WJG. 2013;19:1541–1550. doi: 10.3748/wjg.v19.i10.1541. PubMed DOI PMC
Derakshani M, Lukow T, Liesack W. Novel bacterial lineages at the (sub)division level as detected by signature nucleotide-targeted recovery of 16S rRNA genes from bulk soil and rice roots of flooded rice microcosms. Appl. Environ. Microbiol. 2001;67:623–631. doi: 10.1128/AEM.67.2.623-631.2001. PubMed DOI PMC
Frock AD, Gray SR, Kelly RM. Hyperthermophilic thermotoga species differ with respect to specific carbohydrate transporters and glycoside hydrolases. Appl. Environ. Microbiol. 2012;78:1978–1986. doi: 10.1128/AEM.07069-11. PubMed DOI PMC
Katayama T, et al. Isolation of a member of the candidate phylum ‘Atribacteria’ reveals a unique cell membrane structure. Nat. Commun. 2020;11:6381. doi: 10.1038/s41467-020-20149-5. PubMed DOI PMC
Fadeev, E. et al. Comparison of two 16S rRNA primers (V3–V4 and V4–V5) for studies of arctic microbial communities. Front. Microbiol.12, (2021). PubMed PMC
Sirichoat A, et al. Comparison of different hypervariable regions of 16S rRNA for taxonomic profiling of vaginal microbiota using next-generation sequencing. Arch. Microbiol. 2021;203:1159–1166. doi: 10.1007/s00203-020-02114-4. PubMed DOI
Rintala A, et al. Gut microbiota analysis results are highly dependent on the 16S rRNA gene target region, whereas the impact of DNA extraction is minor. J. Biomol. Tech. JBT. 2017;28:19–30. doi: 10.7171/jbt.17-2801-003. PubMed DOI PMC
Zheng W, et al. An accurate and efficient experimental approach for characterization of the complex oral microbiota. Microbiome. 2015;3:48. doi: 10.1186/s40168-015-0110-9. PubMed DOI PMC
Walters W, et al. Improved bacterial 16S rRNA gene (V4 and V4–5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. mSystems. 2015;1:e00009–15. PubMed PMC
Wei Z, Zhang W, Fang H, Li Y, Wang X. esATAC: An easy-to-use systematic pipeline for ATAC-seq data analysis. Bioinformatics. 2018;34:2664–2665. doi: 10.1093/bioinformatics/bty141. PubMed DOI PMC
Callahan BJ, et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods. 2016;13:581–583. doi: 10.1038/nmeth.3869. PubMed DOI PMC
Wang Q, Garrity GM, Tiedje JM, Cole JR. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 2007;73:5261–5267. doi: 10.1128/AEM.00062-07. PubMed DOI PMC
Quast C, et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–596. doi: 10.1093/nar/gks1219. PubMed DOI PMC
Davis NM, Proctor DM, Holmes SP, Relman DA, Callahan BJ. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome. 2018;6:226. doi: 10.1186/s40168-018-0605-2. PubMed DOI PMC
Schliep KP. phangorn: Phylogenetic analysis in R. Bioinform. Oxf. Engl. 2011;27:592–593. doi: 10.1093/bioinformatics/btq706. PubMed DOI PMC
McMurdie PJ, Holmes S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217. doi: 10.1371/journal.pone.0061217. PubMed DOI PMC
Dixon P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 2003;14:927–930. doi: 10.1111/j.1654-1103.2003.tb02228.x. DOI
Lahti, L. & Shetty, S. Microbiome: Microbiome Analytics. (2022) 10.18129/B9.bioc.microbiome.
Xu, S. & Yu, G. MicrobiotaProcess: A comprehensive R package for managing and analyzing microbiome and other ecological data within the tidy framework. R package version. (2022).
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
Yu G. Using ggtree to visualize data on tree-like structures. Curr. Protoc. Bioinforma. 2020;69:e96. doi: 10.1002/cpbi.96. PubMed DOI
Pedersen, T. L. patchwork. (2022).