• This record comes from PubMed

Non-invasive prenatal testing (NIPT): Combination of copy number variant and gene analyses using an "in-house" target enrichment next generation sequencing-Solution for non-centralized NIPT laboratory?

. 2023 Sep ; 43 (10) : 1320-1332. [epub] 20230821

Language English Country Great Britain, England Media print-electronic

Document type Journal Article

Grant support
(FNOs/2019). Ministry of Health, Czech Republic

OBJECTIVE: Recent studies have integrated copy number variant (CNV) and gene analysis using target enrichment. Here, we transferred this concept to our routine genetics laboratory, which is not linked to centralized non-invasive prenatal testing (NIPT) facilities. METHOD: From a cohort of 100 pregnant women, 22 were selected for the analysis of maternal genomic DNA (gDNA) along with fetal cell-free DNA. Using targeted enrichment, 135 genes were analyzed, combined with aberrations of chromosomes 21, 18, 13, X, and Y. The data were subjected to specificity and sensitivity analyses, and correlated with the results from invasive testing methods. RESULTS: The sensitivity/specificity was determined for the CNV analysis of chromosomes: 21 (80%/75%), 18 (-/82%), 13 (100%/67%), and Y (100%/100%). The gene detection was valid for maternal gDNA. However, for cell-free fetal DNA, it was not possible to determine the boundary between an artifact and a real sequence variant. CONCLUSION: The target enrichment method combining CNV and gene detection seems feasible in a regular laboratory. However, this method can only be responsibly optimized with a sufficient number of controls and further validation on a strong bioinformatic background. The present results showed that NIPT should be performed in specialized centers, and that its introduction to isolated laboratories may not provide valid data.

See more in PubMed

Salomon LJ, Sotiriadis A, Wulff CB, Odibo A, Akolekar R. Risk of miscarriage following amniocentesis or chorionic villus sampling: systematic review of literature and updated meta-analysis. Ultrasound Obstet Gynecol. 2019;54(4):442-451. https://doi.org/10.1002/uog.20353

Merriel A, Alberry M, Abdel-Fattah S. Implications of non-invasive prenatal testing for identifying and managing high-risk pregnancies. Eur J Obstet Gynecol Reprod Biol. 2021;256:32-39. https://doi.org/10.1016/j.ejogrb.2020.10.042

Chitty LS, Mason S, Barrett A, et al. Noninvasive prenatal diagnosis of achondroplasia and thanatophoric dysplasia: next-generation sequencing allows for a safer, more accurate, and comprehensive approach. Prenat Diagn. 2015;35(7):656-662. https://doi.org/10.1002/pd.4583

Hill M, Twiss P, Verhoef TI, et al. Non-invasive prenatal diagnosis for cystic fibrosis: detection of paternal mutations, exploration of patient preferences and cost analysis. Prenat Diagn. 2015;35(10):950-958. https://doi.org/10.1002/pd.4585

Jenkins LA, Deans ZC, Lewis C, Allen S. Delivering an accredited non-invasive prenatal diagnosis service for monogenic disorders and recommendations for best practice. Prenat Diagn. 2018;38(1):44-51. https://doi.org/10.1002/pd.5197

Yang XY, Meng Y, Wang YY, et al. Noninvasive prenatal diagnosis based on cell-free DNA for tuberous sclerosis: a pilot study. Mol Genet Genomic Med. 2022;10(7):e1952. https://doi.org/10.1002/mgg3.1952

Alberry MS, Aziz E, Ahmed SR, Abdek-Fattah S. Non invasive prenatal testing (NIPT) for common aneuploidies and beyond. Eur J Obstet Gynecol Reprod Biol. 2021;258:424-429. https://doi.org/10.1016/j.ejogrb.2021.01.008

Bianchi DW, Zickwolf GK, Weil GJ, Sylvester S, DeMaria MA. Male fetal progenitor cells persist in maternal blood for as long as 27 years postpartum. Proc Natl Acad Sci U S A. 1996;93(2):705-708. https://doi.org/10.1073/pnas.93.2.705

Lo YM, Zhang J, Leung TN, Lau TK, Chang AM, Hjelm NM. Rapid clearance of fetal DNA from maternal plasma. Am J Hum Genet. 1999;64(1):218-224. https://doi.org/10.1086/302205

Canick JA, Kloza EM, Lambert-Messerlian GM, et al. DNA sequencing of maternal plasma to identify down syndrome and other trisomies in multiple gestations. Prenat Diagn. 2012;32(8):730-734. https://doi.org/10.1002/pd.3892

Norton ME, Jacobsson B, Swamy GK, et al. Cell-free DNA analysis for noninvasive examination of trisomy. N Engl J Med. 2015;372(17):1589-1597. https://doi.org/10.1056/nejmoa1407349

Wang E, Batey A, Struble C, Musci T, Song K, Oliphant A. Gestational age and maternal weight effects on fetal cell-free DNA in maternal plasma. Prenat Diagn. 2013;33(7):662-666. https://doi.org/10.1002/pd.4119

Horn R. NIPT and the concerns regarding ‘routinisation’. Eur J Hum Genet. 2022;30(6):637-638. https://doi.org/10.1038/s41431-022-01053-6

Perrot A, Horn R. The ethical landscape(s) of non-invasive prenatal testing in England, France and Germany: findings from a comparative literature review. Eur J Hum Genet. 2022;30(6):676-681. https://doi.org/10.1038/s41431-021-00970-2

Society of Medical Genetics and Genomics Czech Medical Society of J. E. Purkyně. Aktualizované indikace neinvazivního prenatálního testování (NIPT). 2018. Accessed February 3, 2023. https://slg.cz/documents/16/doporuceny-postup-indikace-nipt.pdf

Chitty LS. Advances in the prenatal diagnosis of monogenic disorders. Prenat Diagn. 2018;38(1):3-5. https://doi.org/10.1002/pd.5208

Gullo G, Scaglione M, Buzzaccarini G, et al. Cell-free fetal DNA and non-invasive prenatal diagnosis of chromosomopathies and pediatric monogenic diseases: a critical appraisal and medicolegal remarks. J Personalized Med. 2022;13(1):1. https://doi.org/10.3390/jpm13010001

Luo Y, Jia B, Yan K, et al. Pilot study of a novel multifunctional noninvasive prenatal test on fetus aneuploidy, copy number variation, and single-gene disorder screening. Mol Genet Genomic Med. 2019;7(4):e00597. https://doi.org/10.1002/mgg3.597

Koumbaris G, Achilleos A, Nicolaou M, et al. Targeted capture enrichment followed by NGS: development and validation of a single comprehensive NIPT for chromosomal aneuploidies, microdeletion syndromes and monogenic diseases. Mol Cytogenet. 2019;12(1):48. https://doi.org/10.1186/s13039-019-0459-8

Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114-2120. https://doi.org/10.1093/bioinformatics/btu170

Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25(14):1754-1760. https://doi.org/10.1093/bioinformatics/btp324

Van der Auwera G, O'Connor B. Genomics in the Cloud: Using Docker, GATK, and WDL in Terra. O'Reilly Media; 2020: 493.

Cingolani P, Platts A, Wang LL, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly. 2012;6(2):80-92. https://doi.org/10.4161/fly.19695

O'Leary NA, Wright MW, Brister JR, et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016;44(D1):D733-D745. https://doi.org/10.1093/nar/gkv1189

Sherry ST, Ward M, Sirotkin K. dbSNP-database for single nucleotide polymorphisms and other classes of minor genetic variation. Genome Res. 1999;9(8):677-679. https://doi.org/10.1101/gr.9.8.677

Karczewski KJ, Francioli LC, Tiao G, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581(7809):434-443. https://doi.org/10.1038/s41586-020-2308-7

Landrum MJ, Chitipiralla S, Brown GR, et al. ClinVar: improvements to accessing data. Nucleic Acids Res. 2020;48(D1):D835-D844. https://doi.org/10.1093/nar/gkz972

Talevich E, Shain AH, Botton T, Bastian BC. CNVkit: genome-wide copy number detection and visualization from targeted DNA sequencing. PLoS Comput Biol. 2016;12(4):e1004873. https://doi.org/10.1371/journal.pcbi.1004873

Olshen AB, Bengtsson H, Neuvial P, Spellman PT, Olshen RA, Seshan VE. Parent-specific copy number in paired tumor-normal studies using circular binary segmentation. Bioinformatics. 2011;27(15):2038-2046. https://doi.org/10.1093/bioinformatics/btr329

Minárik G, Hýblová M, Gnip A. Trisomy test s.r.o., Medirex a.s. 2022 Komplexná štatistická analýza v laboratóriu poskytujúcom neinvazívne prenatálne testovanie. Accessed February 7, 2023. https://www.youtube.com/watch?v=7jKJftb35xk

Dar P, Jacobsson B, MacPherson C, et al. Cell-free DNA screening for trisomies 21, 18, and 13 in pregnancies at low and high risk for aneuploidy with genetic confirmation. Am J Obstet Gynecol. 2022;227(2):259.e1-259.e14. https://doi.org/10.1016/j.ajog.2022.01.019

Gullo G, Scaglione M, Cucinella G, et al. Congenital Zika syndrome: genetic avenues for diagnosis and therapy, possible management and long-term outcomes. J Clin Med. 2022;11(5):1351. https://doi.org/10.3390/jcm11051351

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...