A novel SATB1 protein isoform with different biophysical properties

. 2023 ; 11 () : 1242481. [epub] 20230811

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37635874

Intra-thymic T cell development is coordinated by the regulatory actions of SATB1 genome organizer. In this report, we show that SATB1 is involved in the regulation of transcription and splicing, both of which displayed deregulation in Satb1 knockout murine thymocytes. More importantly, we characterized a novel SATB1 protein isoform and described its distinct biophysical behavior, implicating potential functional differences compared to the commonly studied isoform. SATB1 utilized its prion-like domains to transition through liquid-like states to aggregated structures. This behavior was dependent on protein concentration as well as phosphorylation and interaction with nuclear RNA. Notably, the long SATB1 isoform was more prone to aggregate following phase separation. Thus, the tight regulation of SATB1 isoforms expression levels alongside with protein post-translational modifications, are imperative for SATB1's mode of action in T cell development. Our data indicate that deregulation of these processes may also be linked to disorders such as cancer.

Zobrazit více v PubMed

Agarwal A., Arora L., Rai S. K., Avni A., Mukhopadhyay S. (2022). Spatiotemporal modulations in heterotypic condensates of prion and α-synuclein control phase transitions and amyloid conversion. Nat. Commun. 13, 1154. 10.1038/s41467-022-28797-5 PubMed DOI PMC

Agostini F., Cirillo D., Bolognesi B., Tartaglia G. G. (2013). X-Inactivation: quantitative predictions of protein interactions in the xist network. Nucleic Acids Res. 41, e31. 10.1093/nar/gks968 PubMed DOI PMC

Alberti S., Gladfelter A., Mittag T. (2019). Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates. Cell 176, 419–434. 10.1016/j.cell.2018.12.035 PubMed DOI PMC

Aliahmad P., Kadavallore A., de la Torre B., Kappes D., Kaye J. (2011). TOX is required for development of the CD4 T cell lineage gene program. J. Immunol. 187, 5931–5940. 10.4049/jimmunol.1101474 PubMed DOI PMC

Aliahmad P., Kaye J. (2008). Development of all CD4 T lineages requires nuclear factor TOX. J. Exp. Med. 205, 245–256. 10.1084/jem.20071944 PubMed DOI PMC

Alvarez J. D., Yasui D. H., Niida H., Joh T., Loh D. Y., Kohwi-Shigematsu T. (2000). The MAR-binding protein SATB1 orchestrates temporal and spatial expression of multiple genes during T-cell development. Genes Dev. 14, 521–535. 10.1101/gad.14.5.521 PubMed DOI PMC

Banani S. F., Lee H. O., Hyman A. A., Rosen M. K. (2017). Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298. 10.1038/nrm.2017.7 PubMed DOI PMC

Banani S. F., Rice A. M., Peeples W. B., Lin Y., Jain S., Parker R., et al. (2016). Compositional control of phase-separated cellular bodies. Cell 166, 651–663. 10.1016/j.cell.2016.06.010 PubMed DOI PMC

Banc A., Navailles L., Leng J., Renard D. (2021). Dense phases of γ-gliadins in confined geometries. Colloids Interfaces 5, 51. 10.3390/colloids5040051 DOI

Boija A., Klein I. A., Sabari B. R., Dall’Agnese A., Coffey E. L., Zamudio A. V., et al. (2018). Transcription factors activate genes through the phase-separation capacity of their activation domains. Cell 175, 1842–1855.e16. 10.1016/j.cell.2018.10.042 PubMed DOI PMC

Bolognesi B., Lorenzo Gotor N., Dhar R., Cirillo D., Baldrighi M., Tartaglia G. G., et al. (2016). A concentration-dependent liquid phase separation can cause toxicity upon increased protein expression. Cell Rep. 16, 222–231. 10.1016/j.celrep.2016.05.076 PubMed DOI PMC

Cai D., Feliciano D., Dong P., Flores E., Gruebele M., Porat-Shliom N., et al. (2019). Phase separation of YAP reorganizes genome topology for long-term YAP target gene expression. Nat. Cell Biol. 21, 1578–1589. 10.1038/s41556-019-0433-z PubMed DOI PMC

Cai S., Han H.-J., Kohwi-Shigematsu T. (2003). Tissue-specific nuclear architecture and gene expression regulated by SATB1. Nat. Genet. 34, 42–51. 10.1038/ng1146 PubMed DOI

Carpenter A. C., Bosselut R. (2010). Decision checkpoints in the thymus. Nat. Immunol. 11, 666–673. 10.1038/ni.1887 PubMed DOI PMC

Cho W.-K., Spille J.-H., Hecht M., Lee C., Li C., Grube V., et al. (2018). Mediator and RNA polymerase II clusters associate in transcription-dependent condensates. Science 361, 412–415. 10.1126/science.aar4199 PubMed DOI PMC

Cook P. R. (1999). The organization of replication and transcription. Science 284, 1790–1795. 10.1126/SCIENCE.284.5421.1790 PubMed DOI

Corces M. R., Granja J. M., Shams S., Louie B. H., Seoane J. A., Zhou W., et al. (2018). The chromatin accessibility landscape of primary human cancers. Science 362, eaav1898. 10.1126/science.aav1898 PubMed DOI PMC

Costes S. V., Daelemans D., Cho E. H., Dobbin Z., Pavlakis G., Lockett S. (2004). Automatic and quantitative measurement of protein-protein colocalization in live cells. Biophys. J. 86, 3993–4003. 10.1529/biophysj.103.038422 PubMed DOI PMC

Davidson I. F., Peters J. M. (2021). Genome folding through loop extrusion by SMC complexes. Nat. Rev. Mol. Cell Biol. 22, 445–464. 10.1038/s41580-021-00349-7 PubMed DOI

De Belle I., Cai S., Kohwi-Shigematsu T. (1998). The genomic sequences bound to special AT-rich sequence-binding protein 1 (SATB1) in vivo in Jurkat T cells are tightly associated with the nuclear matrix at the bases of the chromatin loops. J. Cell Biol. 141, 335–348. 10.1083/JCB.141.2.335 PubMed DOI PMC

Di Giammartino D. C., Polyzos A., Apostolou E. (2020). Transcription factors: building hubs in the 3D space. Cell cycleGeorget. Tex.) 19, 2395–2410. 10.1080/15384101.2020.1805238 PubMed DOI PMC

Dickinson L. A., Joh T., Kohwi Y., Kohwi-Shigematsu T. (1992). A tissue-specific MAR/SAR DNA-binding protein with unusual binding site recognition. Cell 70, 631–645. 10.1016/0092-8674(92)90432-C PubMed DOI

Ding X., Sun F., Chen J., Chen L., Tobin-Miyaji Y., Xue S., et al. (2020). Amyloid-forming segment induces aggregation of FUS-LC domain from phase separation modulated by site-specific phosphorylation. J. Mol. Biol. 432, 467–483. 10.1016/j.jmb.2019.11.017 PubMed DOI

Durślewicz J., Klimaszewska-Wiśniewska A., Jóźwicki J., Antosik P., Smolińska-Świtała M., Gagat M., et al. (2021). Prognostic significance of TLR2, SMAD3 and localization-dependent SATB1 in stage I and II non–small-cell lung cancer patients. Cancer control. 28, 107327482110566. 10.1177/10732748211056697 PubMed DOI PMC

Egawa T., Tillman R. E., Naoe Y., Taniuchi I., Littman D. R. (2007). The role of the Runx transcription factors in thymocyte differentiation and in homeostasis of naive T cells. J. Exp. Med. 204, 1945–1957. –1957. 10.1084/jem.20070133 PubMed DOI PMC

Erdel F., Rippe K. (2018). Formation of chromatin subcompartments by phase separation. Biophys. J. 114, 2262–2270. 10.1016/j.bpj.2018.03.011 PubMed DOI PMC

Feng D., Chen Y., Dai R., Bian S., Xue W., Zhu Y., et al. (2022). Chromatin organizer SATB1 controls the cell identity of CD4+ CD8+ double-positive thymocytes by regulating the activity of super-enhancers. Nat. Commun. 13, 5554. 10.1038/s41467-022-33333-6 PubMed DOI PMC

Frankish A., Diekhans M., Ferreira A.-M., Johnson R., Jungreis I., Loveland J., et al. (2019). GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res. 47, D766–D773. 10.1093/nar/gky955 PubMed DOI PMC

Franzmann T. M., Alberti S. (2019). Prion-like low-complexity sequences: key regulators of protein solubility and phase behavior. J. Biol. Chem. 294, 7128–7136. 10.1074/jbc.TM118.001190 PubMed DOI PMC

Fujii Y., Kumatori A., Nakamura M. (2003). SATB1 makes a complex with p300 and represses gp91phox promoter activity. Microbiol. Immunol. 47, 803–811. 10.1111/j.1348-0421.2003.tb03438.x PubMed DOI

Galande S., Dickinson L. A., Mian I. S., Sikorska M., Kohwi-Shigematsu T. (2001). SATB1 cleavage by caspase 6 disrupts PDZ domain-mediated dimerization, causing detachment from chromatin early in T-cell apoptosis. Mol. Cell. Biol. 21, 5591–5604. 10.1128/MCB.21.16.5591-5604.2001 PubMed DOI PMC

Ghosh R. P., Shi Q., Yallg L., Reddick M. P., Nikitina T., Zhurkin V. B., et al. (2019). Satb1 integrates DNA binding site geometry and torsional stress to differentially target nucleosome-dense regions. Nat. Commun. 10, 3221. 10.1038/s41467-019-11118-8 PubMed DOI PMC

Gotor N. L., Armaos A., Calloni G., Torrent Burgas M., Vabulas R. M., De Groot N. S., et al. (2020). RNA-Binding and prion domains: the yin and yang of phase separation. Nucleic Acids Res. 48, 9491–9504. 10.1093/nar/gkaa681 PubMed DOI PMC

Grover A., Leskovec J. (2016). node2vec: scalable feature learning for networks. Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discov. Data Min. 2016, 855–864. 10.1145/2939672.2939754 PubMed DOI PMC

Gruber A., Hornburg D., Antonin M., Krahmer N., Collado J., Schaffer M., et al. (2018). Molecular and structural architecture of polyQ aggregates in yeast. PNAS 115, E3446–E3453. 10.1073/pnas.1717978115 PubMed DOI PMC

Guo L., Kim H. J., Wang H., Monaghan J., Freyermuth F., Sung J. C., et al. (2018). Nuclear-import receptors reverse aberrant phase transitions of RNA-binding proteins with prion-like domains. Cell 173, 677–692.e20. 10.1016/j.cell.2018.03.002 PubMed DOI PMC

Hagberg A., Swart P., S Chult D. (2008). Exploring network structure, dynamics, and function using networkx. Los Alamos, NM (United States): Los Alamos National Lab.

Han H.-J., Russo J., Kohwi Y., Kohwi-Shigematsu T. (2008). SATB1 reprogrammes gene expression to promote breast tumour growth and metastasis. Nature 452, 187–193. 10.1038/nature06781 PubMed DOI

Harrison A. F., Shorter J. (2017). RNA-binding proteins with prion-like domains in health and disease. Biochem. J. 474, 1417–1438. 10.1042/BCJ20160499 PubMed DOI PMC

He Y.-W., Beers C., Deftos M. L., Ojala E. W., Forbush K. A., Bevan M. J. (2000). Down-regulation of the orphan nuclear receptor RORγt is essential for T lymphocyte maturation. J. Immunol. 164, 5668–5674. 10.4049/jimmunol.164.11.5668 PubMed DOI

Ikawa T., Hirose S., Masuda K., Kakugawa K., Satoh R., Shibano-Satoh A., et al. (2010). An essential developmental checkpoint for production of the T cell lineage. Science 329, 93–96. 10.1126/science.1188995 PubMed DOI

Kakugawa K., Kojo S., Tanaka H., Seo W., Endo T. A., Kitagawa Y., et al. (2017). Essential roles of SATB1 in specifying T lymphocyte subsets. Cell Rep. 19, 1176–1188. 10.1016/j.celrep.2017.04.038 PubMed DOI

Khare S. P., Shetty A., Biradar R., Patta I., Chen Z. J., Sathe A. V., et al. (2019). NF-κB signaling and IL-4 signaling regulate SATB1 expression via alternative promoter usage during Th2 differentiation. Front. Immunol. 10, 667. 10.3389/fimmu.2019.00667 PubMed DOI PMC

Kim D., Paggi J. M., Park C., Bennett C., Salzberg S. L. (2019). Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915. 10.1038/s41587-019-0201-4 PubMed DOI PMC

Kitagawa Y., Ohkura N., Kidani Y., Vandenbon A., Hirota K., Kawakami R., et al. (2017). Guidance of regulatory T cell development by Satb1-dependent super-enhancer establishment. Nat. Immunol. 18, 173–183. 10.1038/ni.3646 PubMed DOI PMC

Kobayashi-Kirschvink K. J., Nakaoka H., Oda A., Kamei K. F., Nosho K., Fukushima H., et al. (2018). Linear regression links transcriptomic data and cellular Raman spectra. Cell Syst. 7, 104–117.e4. 10.1016/j.cels.2018.05.015 PubMed DOI

Kroschwald S., Maharana S., Simon A. (2017). Hexanediol: A chemical probe to investigate the material properties of membrane-less compartments. Matters 3, e201702000010. 10.19185/matters.201702000010 DOI

Kumar P. P., Bischof O., Purbey P. K., Notani D., Urlaub H., Dejean A., et al. (2007). Functional interaction between PML and SATB1 regulates chromatin-loop architecture and transcription of the MHC class I locus. Nat. Cell Biol. 9, 45–56. 10.1038/ncb1516 PubMed DOI

Kumar P. P., Purbey P. K., Sinha C. K., Notani D., Limaye A., Jayani R. S., et al. (2006). Phosphorylation of SATB1, a global gene regulator, acts as a molecular switch regulating its transcriptional activity in vivo . Mol. Cell 22, 231–243. 10.1016/j.molcel.2006.03.010 PubMed DOI

Langdon E. M., Qiu Y., Ghanbari Niaki A., McLaughlin G. A., Weidmann C. A., Gerbich T. M., et al. (2018). mRNA structure determines specificity of a polyQ-driven phase separation. Science 360, 922–927. 10.1126/science.aar7432 PubMed DOI PMC

Lawrence M., Huber W., Pagès H., Aboyoun P., Carlson M., Gentleman R., et al. (2013). Software for computing and annotating genomic ranges. PLoS Comput. Biol. 9, e1003118. 10.1371/journal.pcbi.1003118 PubMed DOI PMC

Li L., Leid M., Rothenberg E. V. (2010a). An early T cell lineage commitment checkpoint dependent on the transcription factor Bcl11b. Science 329, 89–93. 10.1126/science.1188989 PubMed DOI PMC

Li P., Burke S., Wang J., Chen X., Ortiz M., Lee S.-C., et al. (2010b). Reprogramming of T cells to natural killer–like cells upon Bcl11b deletion. Science 329, 85–89. 10.1126/science.1188063 PubMed DOI PMC

Liao Y., Smyth G. K., Shi W. (2014). featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930. 10.1093/bioinformatics/btt656 PubMed DOI

Love M. I., Huber W., Anders S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550. 10.1186/s13059-014-0550-8 PubMed DOI PMC

Lu Y., Wu T., Gutman O., Lu H., Zhou Q., Henis Y. I., et al. (2020). Phase separation of TAZ compartmentalizes the transcription machinery to promote gene expression. Nat. Cell Biol. 22, 453–464. 10.1038/s41556-020-0485-0 PubMed DOI PMC

Maharana S., Wang J., Papadopoulos D. K., Richter D., Pozniakovsky A., Poser I., et al. (2018). RNA buffers the phase separation behavior of prion-like RNA binding proteins. Science 360, 918–921. 10.1126/science.aar7366 PubMed DOI PMC

March Z. M., King O. D., Shorter J. (2016). Prion-like domains as epigenetic regulators, scaffolds for subcellular organization, and drivers of neurodegenerative disease. Brain Res. 1647, 9–18. 10.1016/j.brainres.2016.02.037 PubMed DOI PMC

Miron E., Oldenkamp R., Brown J. M., Pinto D. M. S., Xu C. S., Faria A. R., et al. (2020). Chromatin arranges in chains of mesoscale domains with nanoscale functional topography independent of cohesin. Sci. Adv. 6, eaba8811. 10.1126/sciadv.aba8811 PubMed DOI PMC

Monahan Z., Ryan V. H., Janke A. M., Burke K. A., Rhoads S. N., Zerze G. H., et al. (2017). Phosphorylation of the FUS low-complexity domain disrupts phase separation, aggregation, and toxicity. EMBO J. 36, 2951–2967. 10.15252/embj.201696394 PubMed DOI PMC

Morganella S., Pagnotta S. M., Ceccarelli M. (2011). Finding recurrent copy number alterations preserving within-sample homogeneity. Bioinformatics 27, 2949–2956. 10.1093/bioinformatics/btr488 PubMed DOI

Murthy A. C., Dignon G. L., Kan Y., Zerze G. H., Parekh S. H., Mittal J., et al. (2019). Molecular interactions underlying liquid−liquid phase separation of the FUS low-complexity domain. Nat. Struct. Mol. Biol. 26, 637–648. 10.1038/s41594-019-0250-x PubMed DOI PMC

Nakayama Y., Mian I. S., Kohwi-Shigematsu T., Ogawa T. (2005). A nuclear targeting determinant for SATB1, a genome organizer in the T cell lineage. Cell Cycle 4, 4099–4106. 10.4161/cc.4.8.1862 PubMed DOI

Notani D., Gottimukkala K. P., Jayani R. S., Limaye A. S., Damle M. V., Mehta S., et al. (2010). Global regulator SATB1 recruits β-Catenin and regulates Th2 differentiation in Wnt-dependent manner. PLOS Biol. 8, e1000296. 10.1371/journal.pbio.1000296 PubMed DOI PMC

Notani D., Ramanujam P. L., Kumar P. P., Gottimukkala K. P., Kumar-Sinha C., Galande S. (2011). N-terminal PDZ-like domain of chromatin organizer SATB1 contributes towards its function as transcription regulator. J. Biosci. 36, 461–469. 10.1007/s12038-011-9091-4 PubMed DOI

Pai S.-Y., Truitt M. L., Ting C.-N., Leiden J. M., Glimcher L. H., Ho I.-C. (2003). Critical roles for transcription factor GATA-3 in thymocyte development. Immunity 19, 863–875. 10.1016/S1074-7613(03)00328-5 PubMed DOI

Patta I., Madhok A., Khare S., Gottimukkala K. P., Verma A., Giri S., et al. (2020). Dynamic regulation of chromatin organizer SATB1 via TCR-induced alternative promoter switch during T-cell development. Nucleic Acids Res. 48, 5873–5890. 10.1093/nar/gkaa321 PubMed DOI PMC

Pearce M. M. P., Kopito R. R. (2018). Prion-like characteristics of polyglutamine-containing proteins. Cold Spring Harb. Perspect. Med. 8, a024257. 10.1101/cshperspect.a024257 PubMed DOI PMC

Pertea M., Pertea G. M., Antonescu C. M., Chang T.-C., Mendell J. T., Salzberg S. L. (2015). StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295. 10.1038/nbt.3122 PubMed DOI PMC

Peskett T. R., Rau F., O’Driscoll J., Patani R., Lowe A. R., Saibil H. R. (2018). A liquid to solid phase transition underlying pathological huntingtin exon1 aggregation. Mol. Cell 70, 588–601.e6. 10.1016/j.molcel.2018.04.007 PubMed DOI PMC

Phillips J. E., Corces V. G. (2009). CTCF: master weaver of the genome. Cell 137, 1194–1211. 10.1016/j.cell.2009.06.001 PubMed DOI PMC

Purbey P. K., Singh S., Notani D., Kumar P. P., Limaye A. S., Galande S. (2009). Acetylation-dependent interaction of SATB1 and CtBP1 mediates transcriptional repression by SATB1. Mol. Cell. Biol. 29, 1321–1337. 10.1128/MCB.00822-08 PubMed DOI PMC

Rai A. K., Chen J.-X., Selbach M., Pelkmans L. (2018). Kinase-controlled phase transition of membraneless organelles in mitosis. Nature 559, 211–216. 10.1038/s41586-018-0279-8 PubMed DOI

Ramírez F., Ryan D. P., Grüning B., Bhardwaj V., Kilpert F., Richter A. S., et al. (2016). deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44, W160–W165. 10.1093/nar/gkw257 PubMed DOI PMC

Raudvere U., Kolberg L., Kuzmin I., Arak T., Adler P., Peterson H., et al. (2019). g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 47, W191–W198. 10.1093/nar/gkz369 PubMed DOI PMC

Rieder D., Trajanoski Z., McNally J. G. (2012). Transcription factories. Front. Genet. 3, 221. 10.3389/FGENE.2012.00221 PubMed DOI PMC

Rowley M. J., Corces V. G. (2018). Organizational principles of 3D genome architecture. Nat. Rev. Genet. 19, 789–800. 10.1038/s41576-018-0060-8 PubMed DOI PMC

Sabari B. R., Dall’Agnese A., Boija A., Klein I. A., Coffey E. L., Shrinivas K., et al. (2018). Coactivator condensation at super-enhancers links phase separation and gene control. Science 361, eaar3958. 10.1126/science.aar3958 PubMed DOI PMC

Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., et al. (2012). Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682. 10.1038/nmeth.2019 PubMed DOI PMC

Schor I. E., Rascovan N., Pelisch F., Alló M., Kornblihtt A. R. (2009). Neuronal cell depolarization induces intragenic chromatin modifications affecting NCAM alternative splicing. PNAS 106, 4325–4330. 10.1073/pnas.0810666106 PubMed DOI PMC

Shattuck J. E., Paul K. R., Cascarina S. M., Ross E. D. (2019). The prion-like protein kinase Sky1 is required for efficient stress granule disassembly. Nat. Commun. 10, 3614. 10.1038/s41467-019-11550-w PubMed DOI PMC

Shin Y., Berry J., Pannucci N., Haataja M. P., Toettcher J. E., Brangwynne C. P. (2017). Spatiotemporal control of intracellular phase transitions using light-activated optoDroplets. Cell 168, 159–171.e14. 10.1016/j.cell.2016.11.054 PubMed DOI PMC

Shin Y., Brangwynne C. P. (2017). Liquid phase condensation in cell physiology and disease. Science 357, eaaf4382. 10.1126/science.aaf4382 PubMed DOI

Shuster S. O., Lee J. C. (2022). Watching liquid droplets of TDP-43CTD age by Raman spectroscopy. J. Biol. Chem. 298, 101528. 10.1016/j.jbc.2021.101528 PubMed DOI PMC

Steinke F. C., Yu S., Zhou X., He B., Yang W., Zhou B., et al. (2014). TCF-1 and LEF-1 act upstream of Th-POK to promote CD4+ T cell lineage choice and cooperate with Runx3 to silence the Cd4 gene in CD8+ T cells. Nat. Immunol. 15, 646–656. 10.1038/ni.2897 PubMed DOI PMC

Sterne-Weiler T., Weatheritt R. J., Best A. J., Ha K. C. H., Blencowe B. J. (2018). Efficient and accurate quantitative profiling of alternative splicing patterns of any complexity on a laptop. Mol. Cell 72, 187–200.e6. 10.1016/j.molcel.2018.08.018 PubMed DOI

Stratigi K., Kapsetaki M., Aivaliotis M., Town T., Flavell R. A., Spilianakis C. G. (2015). Spatial proximity of homologous alleles and long noncoding RNAs regulate a switch in allelic gene expression. PNAS 112, E1577–E1586. 10.1073/pnas.1502182112 PubMed DOI PMC

Sun Z., Unutmaz D., Zou Y.-R., Sunshine M. J., Pierani A., Brenner-Morton S., et al. (2000). Requirement for RORgamma in thymocyte survival and lymphoid organ development. Science 288, 2369–2373. 10.1126/science.288.5475.2369 PubMed DOI

Szklarczyk D., Gable A. L., Lyon D., Junge A., Wyder S., Huerta-Cepas J., et al. (2019). STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47, D607–D613. 10.1093/nar/gky1131 PubMed DOI PMC

Tan J.-A. T., Song J., Chen Y., Durrin L. K. (2010). Phosphorylation-dependent interaction of SATB1 and PIAS1 directs SUMO-regulated caspase cleavage of SATB1. Mol. Cell. Biol. 30, 2823–2836. 10.1128/MCB.01603-09 PubMed DOI PMC

Taniuchi I., Osato M., Egawa T., Sunshine M. J., Bae S.-C., Komori T., et al. (2002). Differential requirements for Runx proteins in CD4 repression and epigenetic silencing during T lymphocyte development. Cell 111, 621–633. 10.1016/S0092-8674(02)01111-X PubMed DOI

Therneau T. M., Grambsch P. M. (2000). Modeling survival data: Extending the cox model. New York: Springer.

Thévenaz P., Ruttimann U. E., Unser M. (1998). A pyramid approach to subpixel registration based on intensity. IEEE Trans. image Process. a Publ. IEEE Signal Process. Soc. 7, 27–41. 10.1109/83.650848 PubMed DOI

Wang J., Choi J.-M., Holehouse A. S., Lee H. O., Zhang X., Jahnel M., et al. (2018). A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins. Cell 174, 688–699.e16. 10.1016/j.cell.2018.06.006 PubMed DOI PMC

Wang L., Wildt K. F., Zhu J., Zhang X., Feigenbaum L., Tessarollo L., et al. (2008). Distinct functions of the transcription factors GATA-3 and ThPOK during intrathymic CD4+ T cell differentiation. Nat. Immunol. 9, 1122–1130. 10.1038/ni.1647 PubMed DOI PMC

Wang Z., Yang X., Chu X., Zhang J., Zhou H., Shen Y., et al. (2012). The structural basis for the oligomerization of the N-terminal domain of SATB1. Nucleic Acids Res. 40, 4193–4202. 10.1093/nar/gkr1284 PubMed DOI PMC

Wang Z., Yang X., Guo S., Yang Y., Su X.-C., Shen Y., et al. (2014). Crystal structure of the ubiquitin-like domain-CUT repeat-like tandem of special AT-rich sequence binding protein 1 (SATB1) reveals a coordinating DNA-binding mechanism. J. Biol. Chem. 289, 27376–27385. 10.1074/jbc.M114.562314 PubMed DOI PMC

Williams A. J., Paulson H. L. (2008). Polyglutamine neurodegeneration: protein misfolding revisited. Trends Neurosci. 31, 521–528. 10.1016/j.tins.2008.07.004 PubMed DOI PMC

Wippich F., Bodenmiller B., Trajkovska M. G., Wanka S., Aebersold R., Pelkmans L. (2013). Dual specificity kinase DYRK3 couples stress granule condensation/dissolution to mTORC1 signaling. Cell 152, 791–805. 10.1016/j.cell.2013.01.033 PubMed DOI

Yasui D., Miyano M., Cai S. T., Varga-Weisz P., Kohwi-Shigematsu T. (2002). SATB1 targets chromatin remodelling to regulate genes over long distances. Nature 419, 641–645. 10.1038/nature01084 PubMed DOI

Yokosawa K., Kajimoto S., Shibata D., Kuroi K., Konno T., Nakabayashi T. (2022). Concentration quantification of the low-complexity domain of fused in sarcoma inside a single droplet and effects of solution parameters. J. Phys. Chem. Lett. 13, 5692–5697. 10.1021/acs.jpclett.2c00962 PubMed DOI

Yoshizawa T., Ali R., Jiou J., Fung H. Y. J., Burke K. A., Kim S. J., et al. (2018). Nuclear import receptor inhibits phase separation of FUS through binding to multiple sites. Cell 173, 693–705.e22. 10.1016/j.cell.2018.03.003 PubMed DOI PMC

Zamudio A. V., Dall’Agnese A., Henninger J. E., Manteiga J. C., Afeyan L. K., Hannett N. M., et al. (2019). Mediator condensates localize signaling factors to key cell identity genes. Mol. Cell 76, 753–766.e6. 10.1016/j.molcel.2019.08.016 PubMed DOI PMC

Zelenka T., Klonizakis A., Tsoukatou D., Papamatheakis D.-A., Franzenburg S., Tzerpos P., et al. (2022). The 3D enhancer network of the developing T cell genome is shaped by SATB1. Nat. Commun. 13, 6954. 10.1038/s41467-022-34345-y PubMed DOI PMC

Zelenka T., Spilianakis C. (2020). SATB1-mediated chromatin landscape in T cells. Nucleus 11, 117–131. 10.1080/19491034.2020.1775037 PubMed DOI PMC

Zhang H., Elbaum-Garfinkle S., Langdon E. M., Taylor N., Occhipinti P., Bridges A. A., et al. (2015). RNA controls polyQ protein phase transitions. Mol. Cell 60, 220–230. 10.1016/j.molcel.2015.09.017 PubMed DOI PMC

Zhang S., Hinde E., Parkyn Schneider M., Jans D. A., Bogoyevitch M. A. (2020). Nuclear bodies formed by polyQ-ataxin-1 protein are liquid RNA/protein droplets with tunable dynamics. Sci. Rep. 10, 1557. 10.1038/s41598-020-57994-9 PubMed DOI PMC

Zhang Y., Liu T., Meyer C. A., Eeckhoute J., Johnson D. S., Bernstein B. E., et al. (2008). Model-based analysis of ChIP-seq (MACS). Genome Biol. 9, R137. 10.1186/gb-2008-9-9-r137 PubMed DOI PMC

Zhou H.-L., Hinman M. N., Barron V. A., Geng C., Zhou G., Luo G., et al. (2011). Hu proteins regulate alternative splicing by inducing localized histone hyperacetylation in an RNA-dependent manner. PNAS 108, E627–E635. 10.1073/pnas.1103344108 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...