Comparison of microleakage under orthodontic brackets bonded with five different adhesive systems: in vitro study
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37670283
PubMed Central
PMC10478400
DOI
10.1186/s12903-023-03368-2
PII: 10.1186/s12903-023-03368-2
Knihovny.cz E-zdroje
- Klíčová slova
- Adhesive, Bracket, Demineralization, Microleakage, Orthodontics, Thermal cycling,
- MeSH
- lidé MeSH
- ortodontické zámky * MeSH
- skloionomerní cementy MeSH
- výzkumný projekt MeSH
- zubní kaz * MeSH
- zubní sklovina MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- skloionomerní cementy MeSH
BACKGROUND: Orthodontic treatment is associated with numerous adverse side effects, such as enamel discoloration, demineralization or even caries. The presence of microleakage between the enamel and the adhesive and between the adhesive and the base of the orthodontic bracket allows penetration of the bacteria, molecules, and liquids into the enamel and can lead to unpleasant "white spot lesions" or secondary caries beneath and around the brackets. The aim of this in vitro study was to evaluate microleakage in five adhesive systems commonly used in orthodontic practice for bonding brackets. METHODS: One hundred extracted premolars were divided into five groups of twenty teeth. Stainless steel Legend medium metal brackets were bonded to teeth using five adhesive systems: resin-reinforced glass ionomer cement GC Fuji Ortho LC (GCF) and composite materials Light Bond (LB), Transbond XT (TB), Trulock™ Light Activated Adhesive (TL), and GC Ortho Connect (GCO). The specimens were subjected to thermal cycling, stained with 2% methylene blue, sectioned with low-speed diamond saw Isomet and evaluated under a digital microscope. Microleakage was detected at the enamel-adhesive and adhesive-bracket interfaces from occlusal and gingival margins. Statistical analysis was performed using generalized linear mixed models with beta error distribution. RESULTS: Microleakage was observed in all materials, with GCF showing the highest amount of microleakage. Composite materials GCO, TB, and LB exhibited the lowest amount of microleakage with no statistical difference between them, while TL showed a statistically significantly higher amount of microleakage (p < 0.001). The enamel-adhesive interface had more microleakage in all composite materials (GCO, LB, TB, and TL) than the adhesive bracket-interface (p < 0.001). The highest amount of microleakage occurred in the gingival region in all materials. CONCLUSION: Composite materials showed better adhesive properties than a resin-reinforced glass ionomer cement. The presence of microleakage at the enamel-adhesive interface facilitates the penetration of various substances into enamel surfaces, causing enamel demineralization and the development of dental caries.
Zobrazit více v PubMed
García-Godoy F, Hicks MJ. Maintaining the integrity of the enamel surface: the role of dental biofilm, saliva and preventive agents in enamel demineralization and remineralization. J Am Dent Assoc. 2008;139:25S–34S. doi: 10.14219/jada.archive.2008.0352. PubMed DOI
Silverstone LM, Johnson NW, Hardie JM, Williams RAD. The microbiology of dental caries. In: Silverstone LM, Johnson NW, Hardie JM, Williams RAD, editors. Dent Caries Aetiol Pathol Prev [Internet]. London: Macmillan Education UK; 1981 [cited 2023 Mar 6]. p. 48–69. 10.1007/978-1-349-16547-6_3
Heymann GC, Grauer D. A contemporary review of white spot lesions in orthodontics. J Esthet Restor Dent. 2013;25:85–95. doi: 10.1111/jerd.12013. PubMed DOI
Boersma JG, van der Veen MH, Lagerweij MD, Bokhout B, Prahl-Andersen B. Caries prevalence measured with QLF after treatment with fixed orthodontic appliances: influencing factors. Caries Res. 2004;39:41–7. doi: 10.1159/000081655. PubMed DOI
Geiger AM, Gorelick L, Gwinnett AJ, Griswold PG. The effect of a fluoride program on white spot formation during orthodontic treatment. Am J Orthod Dentofacial Orthop. 1988;93:29–37. doi: 10.1016/0889-5406(88)90190-4. PubMed DOI
Farooq I, Bugshan A. The role of salivary contents and modern technologies in the remineralization of dental enamel: a narrative review [Internet]. F1000Research; 2021 [cited 2023 Jul 13]. Available from: https://f1000research.com/articles/9-171 PubMed PMC
Neel EAA, Aljabo A, Strange A, Ibrahim S, Coathup M, Young AM, et al. Demineralization–remineralization dynamics in teeth and bone. Int J Nanomedicine. 2016;11:4743–63. PubMed PMC
Alkis H, Turkkahraman H, Adanir N. Microleakage under orthodontic brackets bonded with different adhesive systems. Eur J Dent. 2015;9:117–21. doi: 10.4103/1305-7456.149656. PubMed DOI PMC
Eliades T, Brantley WA. Orthodontic applications of biomaterials: a clinical guide. Woodhead Publishing; 2016.
Zhang K, Zhang N, Weir MD, Reynolds MA, Bai Y, Xu HHK. Bioactive dental composites and bonding agents having remineralizing and antibacterial characteristics. Dent Clin North Am. 2017;61:669–87. doi: 10.1016/j.cden.2017.05.002. PubMed DOI PMC
Chrószcz MW, Barszczewska-Rybarek IM, Kazek-Kęsik A. Novel antibacterial copolymers based on quaternary ammonium urethane-dimethacrylate analogues and triethylene glycol dimethacrylate. Int J Mol Sci. 2022;23:4954. doi: 10.3390/ijms23094954. PubMed DOI PMC
Abdelraouf RM, Mohammed M, Abdelgawad F. Evaluation of shear-bond-strength of dental self-ddhering flowable resin-composite versus total-etch one to enamel and dentin surfaces: an In-Vitro Study. Open Access Maced J Med Sci. 2019;7:2162–6. doi: 10.3889/oamjms.2019.579. PubMed DOI PMC
Yoshida Y, Nagakane K, Fukuda R, Nakayama Y, Okazaki M, Shintani H, et al. Comparative study on adhesive performance of functional monomers. J Dent Res. 2004;83:454–8. doi: 10.1177/154405910408300604. PubMed DOI
Godoy-Bezerra J, Vieira S, Oliveira JHG, Lara F. Shear bond strength of resin-modified glass ionomer cement with saliva present and different enamel pretreatments. Angle Orthod. 2006;76:470–4. PubMed
McLean JW. The clinical use of glass-ionomer cements. Dent Clin North Am. 1992;36:693–711. doi: 10.1016/S0011-8532(22)01824-9. PubMed DOI
de Camargo EJ, Moreschi E, Baseggio W, Cury JA, Pascotto RC. Composite depth of cure using four polymerization techniques. J Appl Oral Sci. 2009;17:446–50. doi: 10.1590/S1678-77572009000500018. PubMed DOI PMC
Peterson EA, Phillips RW, Swartz ML. A comparison of the physical properties of four restorative resins. J Am Dent Assoc 1939. 1966;73:1324–36. PubMed
Davidson CL, Feilzer AJ. Polymerization shrinkage and polymerization shrinkage stress in polymer-based restoratives. J Dent. 1997;25:435–40. doi: 10.1016/S0300-5712(96)00063-2. PubMed DOI
Cadenaro M, Maravic T, Comba A, Mazzoni A, Fanfoni L, Hilton T, et al. The role of polymerization in adhesive dentistry. Dent Mater off Publ Acad Dent Mater. 2019;35:e1–22. PubMed
Tibbetts V, Schnell RJ, Swartz ML, Phillips RW. Thermal diffusion through amalgam and cement bases: comparison of in vitro and in vivo measurements. J Dent Res. 1976;55:441–51. doi: 10.1177/00220345760550032401. PubMed DOI
Spierings TA, Peters M, Bosman F, Plasschaert AJM. Verification of theoretical modeling of heat transmission in teeth by in vivo experiments. J Dent Res. 1987;66:1336–9. doi: 10.1177/00220345870660080901. PubMed DOI
Palmer DS, Barco MT, Billy EJ. Temperature extremes produced orally by hot and cold liquids. J Prosthet Dent. 1992;67:325–7. doi: 10.1016/0022-3913(92)90239-7. PubMed DOI
Nelsen RJ, Wolcott RB, Paffenbarger GC. Fluid exchange at the margins of dental restorations. J Am Dent Assoc 1939. 1952;44:288–95. PubMed
Canbek K, Karbach M, Gottschalk F, Erbe C, Wehrbein H. Evaluation of bovine and human teeth exposed to thermocycling for microleakage under bonded metal brackets. J Orofac Orthop Fortschritte Kieferorthopadie OrganOfficial J Dtsch Ges Kieferorthopadie. 2013;74:102–12. doi: 10.1007/s00056-012-0123-y. PubMed DOI
Hamdy TM. Interfacial microscopic examination and chemical analysis of resin-dentin interface of self-adhering flowable resin composite. F1000Research. 2017;6:1688. doi: 10.12688/f1000research.12306.1. PubMed DOI PMC
Manihani AKDS, Mulay S, Beri L, Shetty R, Gulati S, Dalsania R. Effect of total-etch and self-etch adhesives on the bond strength of composite to glass-ionomer cement/resin-modified glass-ionomer cement in the sandwich technique - A systematic review. Dent Res J. 2021;18:72. doi: 10.4103/1735-3327.326645. PubMed DOI PMC
Schmid-Schwap M, Graf A, Preinerstorfer A, Watts DC, Piehslinger E, Schedle A. Microleakage after thermocycling of cemented crowns—A meta-analysis. Dent Mater. 2011;27:855–69. doi: 10.1016/j.dental.2011.05.002. PubMed DOI
Douma JC, Weedon JT. Analysing continuous proportions in ecology and evolution: a practical introduction to beta and Dirichlet regression. Methods Ecol Evol. 2019;10:1412–30. doi: 10.1111/2041-210X.13234. DOI
Brooks ME, Kristensen K, Van Benthem KJ, Magnusson A, Berg CW, Nielsen A, et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 2017;9:378–400. doi: 10.32614/RJ-2017-066. DOI
Team RC. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Httpwww R-Proj Org. 2013.
DR BKA . Model selection and multimodel inference: a practical information-theoretic approach. New York, NY: Springer; 2002.
Lenth R, Singmann H, Love J, Buerkner P, Herve M. Emmeans: Estimated marginal means, aka least-squares means. R Package Version 1 (2018). 2021.
Khoroushi M, Kachuie M. Prevention and Treatment of White Spot Lesions in Orthodontic Patients. Contemp Clin Dent. 2017;8:11–9. doi: 10.4103/ccd.ccd_216_17. PubMed DOI PMC
O’Reilly MM, Featherstone JD. Demineralization and remineralization around orthodontic appliances: an in vivo study. Am J Orthod Dentofac Orthop off Publ Am Assoc Orthod Its Const Soc Am Board Orthod. 1987;92:33–40. PubMed
Bhushan R, Jeri SY, Narayanamurthy S, Vrinda SM, Soans CR, Reddy H. Assessment of microleakage under stainless steel orthodontic brackets bonded with various adhesive systems: an in vitro study. J Contemp Dent Pract. 2021;22:620–3. doi: 10.5005/jp-journals-10024-3089. PubMed DOI
Uysal T, Ulker M, Ramoglu SI, Ertas H. Microleakage under metallic and ceramic brackets bonded with orthodontic self-etching primer systems. Angle Orthod. 2008;78:1089–94. doi: 10.2319/100507-481.1. PubMed DOI
Ramoglu SI, Uysal T, Ulker M, Ertas H. Microleakage under ceramic and metallic brackets bonded with resin-modified glass ionomer. Angle Orthod. 2009;79:138–43. doi: 10.2319/102607-508.1. PubMed DOI
Atash R, Fneiche A, Cetik S, Bahrami B, Balon-Perin A, Orellana M, et al. In vitro evaluation of microleakage under orthodontic brackets bonded with different adhesive systems. Eur J Dent. 2017;11:180–5. doi: 10.4103/ejd.ejd_312_16. PubMed DOI PMC
Buyuk SK, Cantekin K, Demirbuga S, Ali Ozturk M. Are the low-shrinking composites suitable for orthodontic bracket bonding? Eur J Dent. 2013;7:284–8. doi: 10.4103/1305-7456.115411. PubMed DOI PMC
Vicente A, Ortiz AJ, Bravo LA. Microleakage beneath brackets bonded with flowable materials: effect of thermocycling. Eur J Orthod. 2009;31:390–6. doi: 10.1093/ejo/cjn126. PubMed DOI
Hedayati Z, Farjood A. Evaluation of microleakage under orthodontic brackets bonded with nanocomposites. Contemp Clin Dent. 2018;9:361–6. doi: 10.4103/ccd.ccd_69_18. PubMed DOI PMC
Arhun N, Arman A, Cehreli SB, Arikan S, Karabulut E, Gülşahi K. Microleakage beneath ceramic and metal brackets bonded with a conventional and an antibacterial adhesive system. Angle Orthod. 2006;76:1028–34. doi: 10.2319/101805-368. PubMed DOI
Ulker M, Uysal T, Ramoglu SI, Ertas H. Microleakage under orthodontic brackets using high-intensity curing lights. Angle Orthod. 2009;79:144–9. doi: 10.2319/111607-534.1. PubMed DOI
Yagci A, Uysal T, Ulker M, Ramoglu SI. Microleakage under orthodontic brackets bonded with the custom base indirect bonding technique. Eur J Orthod. 2010;32:259–63. doi: 10.1093/ejo/cjp090. PubMed DOI
Pakshir H, Ajami S. Effect of enamel preparation and light curing methods on microleakage under orthodontic brackets. J Dent Tehran Iran. 2015;12:436–46. PubMed PMC
Davari A, Yassaei S, Karandish M, Zarghami F. In vitro evaluation of microleakage under ceramic and metal brackets bonded with LED and plasma arc curing. J Contemp Dent Pract. 2012;13:644–9. doi: 10.5005/jp-journals-10024-1202. PubMed DOI
Tudehzaeim MH, Yassaei S, Taherimoghadam S. Comparison of microleakage under rebonded stainless steel orthodontic brackets using two methods of adhesive removal: sandblast and laser. J Dent Tehran Iran. 2015;12:118–24. PubMed PMC