Lipid Nanoparticles Deliver mRNA to the Brain after an Intracerebral Injection

. 2023 Dec 19 ; 62 (24) : 3533-3547. [epub] 20230920

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37729550

Grantová podpora
R21 AG072423 NIA NIH HHS - United States
R33 AI119115 NIAID NIH HHS - United States
U19 NS132303 NINDS NIH HHS - United States
R01 MH125979 NIMH NIH HHS - United States
R01 EB029320 NIBIB NIH HHS - United States
UG3 NS115599 NINDS NIH HHS - United States
UM1 AI164559 NIAID NIH HHS - United States
R33 DA048444 NIDA NIH HHS - United States

Neurological disorders are often debilitating conditions with no cure. The majority of current therapies are palliative rather than disease-modifying; therefore, new strategies for treating neurological disorders are greatly needed. mRNA-based therapeutics have great potential for treating such neurological disorders; however, challenges with delivery have limited their clinical potential. Lipid nanoparticles (LNPs) are a promising delivery vector for the brain, given their safer toxicity profile and higher efficacy. Despite this, very little is known about LNP-mediated delivery of mRNA into the brain. Here, we employ MC3-based LNPs and successfully deliver Cre mRNA and Cas9 mRNA/Ai9 sgRNA to the adult Ai9 mouse brain; greater than half of the entire striatum and hippocampus was found to be penetrated along the rostro-caudal axis by direct intracerebral injections of MC3 LNP mRNAs. MC3 LNP Cre mRNA successfully transfected cells in the striatum (∼52% efficiency) and hippocampus (∼49% efficiency). In addition, we demonstrate that MC3 LNP Cas9 mRNA/Ai9 sgRNA edited cells in the striatum (∼7% efficiency) and hippocampus (∼3% efficiency). Further analysis demonstrates that MC3 LNPs mediate mRNA delivery to multiple cell types including neurons, astrocytes, and microglia in the brain. Overall, LNP-based mRNA delivery is effective in brain tissue and shows great promise for treating complex neurological disorders.

Zobrazit více v PubMed

Damase TR; Sukhovershin R; Boada C; Taraballi F; Pettigrew RI.Cooke JP. The Limitless Future of RNA Therapeutics, Front Bioeng Biotechnol 2021, 9, 628137. PubMed PMC

Qin S; Tang X; Chen Y; Chen K; Fan N; Xiao W; Zheng Q; Li G; Teng Y; Wu M.Song X. mRNA-based therapeutics: powerful and versatile tools to combat diseases, Signal Transduct Target Ther 2022, 7, 166. PubMed PMC

Anthony K. RNA-based therapeutics for neurological diseases, RNA Biol. 2022, 19, 176–190. PubMed PMC

Peng H; Guo X; He J; Duan C; Yang M; Zhang X; Zhang L; Fu R; Wang B; Wang D; Chen H; Xie M; Feng P; Dai L; Tang X.Luo J. Intracranial delivery of synthetic mRNA to suppress glioblastoma, Mol Ther Oncolytics 2022, 24, 160–170. PubMed PMC

Pardi N; Tuyishime S; Muramatsu H; Kariko K; Mui BL; Tam YK; Madden TD; Hope MJ.Weissman D. Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes, J Control Release 2015, 217, 345–351. PubMed PMC

Tanaka H; Nakatani T; Furihata T; Tange K; Nakai Y; Yoshioka H; Harashima H.Akita H. In Vivo Introduction of mRNA Encapsulated in Lipid Nanoparticles to Brain Neuronal Cells and Astrocytes via Intracerebroventricular Administration, Mol Pharm 2018, 15, 2060–2067. PubMed

Li Y; Jarvis R; Zhu K; Glass Z; Ogurlu R; Gao P; Li P; Chen J; Yu Y; Yang Y.Xu Q. Protein and mRNA Delivery Enabled by Cholesteryl-Based Biodegradable Lipidoid Nanoparticles, Angew Chem Int Ed Engl 2020, 59, 14957–14964. PubMed PMC

Hou X; Zaks T; Langer R.Dong Y. Lipid nanoparticles for mRNA delivery, Nat Rev Mater 2021, 6, 1078–1094. PubMed PMC

Di J; Du Z; Wu K; Jin S; Wang X; Li T.Xu Y. Biodistribution and Non-linear Gene Expression of mRNA LNPs Affected by Delivery Route and Particle Size, Pharm Res 2022, 39, 105–114. PubMed PMC

Kariko K; Keller JM; Harris VA; Langer DJ.Welsh FA. In vivo protein expression from mRNA delivered into adult rat brain, J Neurosci Methods 2001, 105, 77–86. PubMed

Mahato RI; Kawabata K; Nomura T; Takakura Y.Hashida M. Physicochemical and pharmacokinetic characteristics of plasmid DNA/cationic liposome complexes, J Pharm Sci 1995, 84, 1267–1271. PubMed

Palmer LR; Chen T; Lam AM; Fenske DB; Wong KF; MacLachlan I.Cullis PR. Transfection properties of stabilized plasmid-lipid particles containing cationic PEG lipids, Biochim Biophys Acta 2003, 1611, 204–216. PubMed

Han X; Zhang H; Butowska K; Swingle KL; Alameh MG; Weissman D.Mitchell MJ. An ionizable lipid toolbox for RNA delivery, Nat Commun 2021, 12, 7233. PubMed PMC

Tam YY; Chen S.Cullis PR. Advances in Lipid Nanoparticles for siRNA Delivery, Pharmaceutics 2013, 5, 498–507. PubMed PMC

Satapathy MK; Yen TL; Jan JS; Tang RD; Wang JY; Taliyan R.Yang CH. Solid Lipid Nanoparticles (SLNs): An Advanced Drug Delivery System Targeting Brain through BBB, Pharmaceutics 2021, 13, 1183. PubMed PMC

Rungta RL; Choi HB; Lin PJ; Ko RW; Ashby D; Nair J; Manoharan M; Cullis PR.Macvicar BA. Lipid Nanoparticle Delivery of siRNA to Silence Neuronal Gene Expression in the Brain, Mol Ther Nucleic Acids 2013, 2, e136. PubMed PMC

Freed CR; Greene PE; Breeze RE; Tsai WY; DuMouchel W; Kao R; Dillon S; Winfield H; Culver S; Trojanowski JQ; Eidelberg D.Fahn S. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease, N Engl J Med 2001, 344, 710–719. PubMed

Kunwar S; Prados MD; Chang SM; Berger MS; Lang FF; Piepmeier JM; Sampson JH; Ram Z; Gutin PH; Gibbons RD; Aldape KD; Croteau DJ; Sherman JW; Puri RK.Cintredekin Besudotox Intraparenchymal Study, G. Direct intracerebral delivery of cintredekin besudotox (IL13-PE38QQR) in recurrent malignant glioma: a report by the Cintredekin Besudotox Intraparenchymal Study Group, J Clin Oncol 2007, 25, 837–844. PubMed

Ma Y; Tang C; Chaly T; Greene P; Breeze R; Fahn S; Freed C; Dhawan V.Eidelberg D. Dopamine cell implantation in Parkinson’s disease: long-term clinical and (18)F-FDOPA PET outcomes, J Nucl Med 2010, 51, 7–15. PubMed PMC

Chaichana KL; Pinheiro L.Brem H. Delivery of local therapeutics to the brain: working toward advancing treatment for malignant gliomas, Ther Deliv 2015, 6, 353–369. PubMed PMC

Chang Z; Mao G; Sun L; Ao Q; Gu Y.Liu Y. Cell therapy for cerebral hemorrhage: Five year follow-up report, Exp Ther Med 2016, 12, 3535–3540. PubMed PMC

Gernert M; Feja M. Bypassing the Blood-Brain Barrier: Direct Intracranial Drug Delivery in Epilepsies, Pharmaceutics 2020, 12, 1134. PubMed PMC

Duerinck J; Schwarze JK; Awada G; Tijtgat J; Vaeyens F; Bertels C; Geens W; Klein S; Seynaeve L; Cras L; D’Haene N; Michotte A; Caljon B; Salmon I; Bruneau M; Kockx M; Van Dooren S; Vanbinst AM; Everaert H; Forsyth R.Neyns B. Intracerebral administration of CTLA-4 and PD-1 immune checkpoint blocking monoclonal antibodies in patients with recurrent glioblastoma: a phase I clinical trial, J Immunother Cancer 2021, 9, e002296. PubMed PMC

Bilang-Bleuel A; Revah F; Colin P; Locquet I; Robert JJ; Mallet J.Horellou P. Intrastriatal injection of an adenoviral vector expressing glial-cell-line-derived neurotrophic factor prevents dopaminergic neuron degeneration and behavioral impairment in a rat model of Parkinson disease, Proc Natl Acad Sci U S A 1997, 94, 8818–8823. PubMed PMC

Gey L; Gernert M.Loscher W. Continuous bilateral infusion of vigabatrin into the subthalamic nucleus: Effects on seizure threshold and GABA metabolism in two rat models, Neurobiol Dis 2016, 91, 194–208. PubMed

Gao Y; Geng L; Chen VP.Brimijoin S. Therapeutic Delivery of Butyrylcholinesterase by Brain-Wide Viral Gene Transfer to Mice, Molecules 2017, 22, 1145. PubMed PMC

Noh JE; Oh SH; Park IH.Song J. Intracerebral Transplants of GMP-Grade Human Umbilical Cord-Derived Mesenchymal Stromal Cells Effectively Treat Subacute-Phase Ischemic Stroke in a Rodent Model, Front Cell Neurosci 2020, 14, 546659. PubMed PMC

Nance EA; Woodworth GF; Sailor KA; Shih TY; Xu Q; Swaminathan G; Xiang D; Eberhart C.Hanes J. A dense poly(ethylene glycol) coating improves penetration of large polymeric nanoparticles within brain tissue, Sci Transl Med 2012, 4, 149ra119. PubMed PMC

Chen S; Tam YY; Lin PJ; Leung AK; Tam YK.Cullis PR. Development of lipid nanoparticle formulations of siRNA for hepatocyte gene silencing following subcutaneous administration, J Control Release 2014, 196, 106–112. PubMed

Mastorakos P; Zhang C; Berry S; Oh Y; Lee S; Eberhart CG; Woodworth GF; Suk JS.Hanes J. Highly PEGylated DNA Nanoparticles Provide Uniform and Widespread Gene Transfer in the Brain, Adv Healthc Mater 2015, 4, 1023–1033. PubMed PMC

Gaj T; Ojala DS; Ekman FK; Byrne LC; Limsirichai P.Schaffer DV. In vivo genome editing improves motor function and extends survival in a mouse model of ALS, Sci Adv 2017, 3, eaar3952. PubMed PMC

Yang S; Chang R; Yang H; Zhao T; Hong Y; Kong HE; Sun X; Qin Z; Jin P; Li S.Li XJ. CRISPR/Cas9-mediated gene editing ameliorates neurotoxicity in mouse model of Huntington’s disease, J Clin Invest 2017, 127, 2719–2724. PubMed PMC

Lee B; Lee K; Panda S; Gonzales-Rojas R; Chong A; Bugay V; Park HM; Brenner R; Murthy N.Lee HY. Nanoparticle delivery of CRISPR into the brain rescues a mouse model of fragile X syndrome from exaggerated repetitive behaviours, Nat Biomed Eng 2018, 2, 497–507. PubMed PMC

Gyorgy B; Loov C; Zaborowski MP; Takeda S; Kleinstiver BP; Commins C; Kastanenka K; Mu D; Volak A; Giedraitis V; Lannfelt L; Maguire CA; Joung JK; Hyman BT; Breakefield XO.Ingelsson M. CRISPR/Cas9 Mediated Disruption of the Swedish APP Allele as a Therapeutic Approach for Early-Onset Alzheimer’s Disease, Mol Ther Nucleic Acids 2018, 11, 429–440. PubMed PMC

Ekman FK; Ojala DS; Adil MM; Lopez PA; Schaffer DV.Gaj T. CRISPR-Cas9-Mediated Genome Editing Increases Lifespan and Improves Motor Deficits in a Huntington’s Disease Mouse Model, Mol Ther Nucleic Acids 2019, 17, 829–839. PubMed PMC

Ricci R; Colasante G. CRISPR/dCas9 as a Therapeutic Approach for Neurodevelopmental Disorders: Innovations and Limitations Compared to Traditional Strategies, Dev Neurosci 2021, 43, 253–261. PubMed

Staahl BT; Benekareddy M; Coulon-Bainier C; Banfal AA; Floor SN; Sabo JK; Urnes C; Munares GA; Ghosh A.Doudna JA. Efficient genome editing in the mouse brain by local delivery of engineered Cas9 ribonucleoprotein complexes, Nat Biotechnol 2017, 35, 431–434. PubMed PMC

Abbasi S; Uchida S; Toh K; Tockary TA; Dirisala A; Hayashi K; Fukushima S.Kataoka, K. Co-encapsulation of Cas9 mRNA and guide RNA in polyplex micelles enables genome editing in mouse brain, J Control Release 2021, 332, 260–268. PubMed

Kulkarni JA; Myhre JL; Chen S; Tam YYC; Danescu A; Richman JM.Cullis PR. Design of lipid nanoparticles for in vitro and in vivo delivery of plasmid DNA, Nanomedicine 2017, 13, 1377–1387. PubMed

Cullis PR; Hope MJ. Lipid Nanoparticle Systems for Enabling Gene Therapies, Mol Ther 2017, 25, 1467–1475. PubMed PMC

Long J; Yu C; Zhang H; Cao Y; Sang Y; Lu H; Zhang Z; Wang X; Wang H; Song G; Yang J.Wang S. Novel Ionizable Lipid Nanoparticles for SARS-CoV-2 Omicron mRNA Delivery, Adv Healthc Mater 2023, e2202590. PubMed PMC

Madisen L; Zwingman TA; Sunkin SM; Oh SW; Zariwala HA; Gu H; Ng LL; Palmiter RD; Hawrylycz MJ; Jones AR; Lein ES.Zeng HA robust and high-throughput Cre reporting and characterization system for the whole mouse brain, Nat. Neurosci. 2010, 13, 133–140. PubMed PMC

Li J; Tuma J; Han H; Kim H; Wilson RC; Lee HY.Murthy N. The Coiled-Coil Forming Peptide (KVSALKE)(5) Is a Cell Penetrating Peptide that Enhances the Intracellular Delivery of Proteins, Adv Healthc Mater 2022, 11, e2102118. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...