• This record comes from PubMed

Characterization of vestibular schwannoma tissues using liquid chromatography-tandem mass spectrometry analysis of specific peptide fragments separated by in-sample tryptic protein digestion followed by mathematical analysis

. 2023 Nov ; 46 (22) : e2300543. [epub] 20230922

Language English Country Germany Media print-electronic

Document type Journal Article

Grant support
194423 Grant Agency of Charles University in Prague (GAUK)
874120 Grant Agency of Charles University in Prague (GAUK)
19-08241S Czech Science Foundation (GACR)
NV19-06-00189 Ministry of Health of the Czech Republic
NV20-08-00311 Ministry of Health of the Czech Republic
Cooperatio ONCO Charles University in Prague
RVO 61388963 Czech Academy of Sciences
LUC23138 Ministry of Education, Youth and Sports of the Czech Republic

Vestibular schwannoma is the most common benign neoplasm of the cerebellopontine angle. Its first symptoms include hearing loss, tinnitus, and vestibular symptoms, followed by cerebellar and brainstem symptoms, along with palsy of the adjacent cranial nerves. However, the clinical picture has unpredictable dynamics and currently, there are no reliable predictors of tumor behavior. Hence, it is desirable to have a fast routine method for analysis of vestibular schwannoma tissues at the molecular level. The major objective of this study was to verify whether a technique using in-sample specific protein digestion with trypsin would have the potential to provide a proteomic characterization of these pathological tissues. The achieved results showed that the use of this approach with subsequent liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of released peptides allowed a fast identification of a considerable number of proteins in two differential parts of vestibular schwannoma tissue as well as in tissues of control healthy samples. Furthermore, mathematical analysis of MS data was able to discriminate between pathological vestibular schwannoma tissues and healthy tissues. Thus, in-sample protein digestion combined with LC-MS/MS separation and identification of released specific peptides followed by mathematical analysis appears to have the potential for routine characterization of vestibular schwannomas at the molecular level. Data are available via ProteomeXchange with identifier PXD045261.

See more in PubMed

Stangerup SE, Tos M, Thomsen J, Caye-Thomasen P. True incidence of vestibular schwannoma? Neurosurgery 2010;67:1335-1340.

Erickson NJ, Schmalz PGR, Agee BS, Fort M, Walters BC, McGrew BM, et al. Koos classification of vestibular schwannomas: a reliability study. Clin Neurosurg. 2019;85:409-414.

Cutfield SW, Wickremesekera AC, Mantamadiotis T, Kaye AH, Tan ST, Stylli SS, et al. Tumour stem cells in schwannoma: a review. J Clin Neurosci. 2019;62:21-26.

Evans DGR. Neurofibromatosis type 2 (NF2): A clinical and molecular review. Orphanet J Rare Dis. 2009;4:16. https://doi.org/10.1186/1750-1172-4-16

Tesařová M, Peterková L, Šťastná M, Kolář M, Lacina L, Smetana K, et al. Tumor biology and microenvironment of vestibular schwannoma-relation to tumor growth and hearing loss. Biomedicines 2023;11:32. https://doi.org/10.3390/biomedicines11010032

Seo J-H, Park K-H, Jeon E-J, Chang K-H, Lee H, Lee W, et al. Proteomic analysis of vestibular schwannoma: conflicting role of apoptosis on the pathophysiology of sporadic vestibular schwannoma. Otol Neurotol. 2015;36:714-719. https://doi.org/10.1097/MAO.0000000000000643

Xu J, Zhang Y, Shi Y, Yin D, Dai P, Zhao W, et al. Identification of predictive proteins and biological pathways for the tumorigenicity of vestibular schwannoma by proteomic profiling. Proteomics Clin Appl. 2019;13:e1800175. https://doi.org/10.1002/prca.201800175

Xu J, Ma J, Shi Y, Yin D, Zhang Y, Dai P, et al. Differential protein expression between cystic and solid vestibular schwannoma using tandem mass tag-based quantitative proteomic analysis. Proteomics Clin Appl. 2020;14:e1900112. https://doi.org/10.1002/prca.201900112

Kazemizadeh Gol MA, Lund TC, Levine SC, Adams ME. Quantitative proteomics of vestibular schwannoma cerebrospinal fluid: a pilot study. Otolaryngol Head Neck Surg. 2016;154:902-956.

Huang X, Xu J, Shen Y, Zhang L, Xu M, Chen M, et al. Protein profiling of cerebrospinal fluid from patients undergoing vestibular schwannoma surgery and clinical significance. Biomed Pharmacother. 2019;116:108985. https://doi.org/10.1016/j.biopha.2019.108985

Novikova S, Soloveva N, Farafonova T, Tikhonova O, Shimansky V, Kugushev I, et al. Proteomic shotgun and targeted mass spectrometric datasets of cerebrospinal fluid (liquor) derived from patients with vestibular schwannoma. Data 2023;8:71. https://doi.org/10.3390/data8040071

Hynek R, Kuckova S, Hradilova J, Kodicek M. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry as a tool for fast identification of protein binders in color layers of paintings. Rapid Commun Mass Spectrom. 2004;18:1896-1900.

Hrdlickova Kuckova S, Rambouskova G, Hynek R, Cejnar P, Oltrogge D, Fuchs R. Evaluation of mass spectrometric data using principal component analysis for determination of the effects of organic lakes on protein binder identification. J Mass Spectrom. 2015;50:1270-1278.

Zeman A, Šmíd M, Havelcová M, Coufalová L, Kučková Š, Velčovská M, et al. The structure and material composition of ossified aortic valves identified using a set of scientific methods. J Asian Earth Sci. 2013;77:311-317.

Krizkova MC, Kuckova SH, Santrucek J, Hynek R. Peptide mass mapping as an effective tool for historical mortar analysis. Constr Build Mater. 2014;50:219-225.

Michalusova I, Trubacova D, Cejnar P, Kuckova S, Santrucek J, Hynek R. Direct tryptic cleavage in bone tissue followed by LC-MS/MS as a first step towards routine characterization of proteins embedded in alveolar bones. Int J Mass Spectrom. 2020;455:116375. https://doi.org/10.1016/j.ijms.2020.116375

Michalusová I, Sázelová P, Cejnar P, Kučková Š, Hynek R, Kašička V. Capillary electrophoretic profiling of in-bone tryptic digests of proteins as a potential tool for the detection of inflammatory states in oral surgery. J Sep Sci. 2020;43:3949-3959.

Hynek R, Michalus I, Cejnar P, Šantrůček J, Seidlová S, Kučková Š, et al. In-bone protein digestion followed by LC-MS/MS peptide analysis as a new way towards the routine proteomic characterization of human maxillary and mandibular bone tissue in oral surgery. Electrophoresis 2021;42:2552-2562.

Michalus I, Van Nguyen T, Viktorová J, Cejnar P, Šantrůček J, Kučková Š, et al. Liquid chromatography-tandem mass spectrometry analysis of peptides separated from the insoluble matrix by in-sample tryptic protein digestion for rapid discrimination of various induced pathological states of human bone models in oral surgery. J Sep Sci. 2022;45:4388-4396.

Kuckova S, Smirnova TA, Straka D, Meledina A, Santrucek J, Humpolakova K, et al. Proteotypic peptides of hairs for the identification of common European domestic and wild animal species revealed by in-sample protein digestion and mass spectrometry analysis. J Sep Sci. 2023;46:e2300064. https://doi.org/10.1002/jssc.202300064

Nguyen Tran V, Strnad O, Šuman J, Veverková T, Sukupová A, Cejnar P, et al. Cannabidiol nanoemulsion for eye treatment-anti-inflammatory, wound healing activity and its bioavailability using in vitro human corneal substitute. Int J Pharm. 2023;643:123202.

Perez-Riverol Y, Bai J, Bandla C, Hewapathirana S, García-Seisdedos D, Kamatchinathan S, et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 2022;50(D1):D543-D552.

Cejnar P, Smirnova TA, Kuckova S, Prochazka A, Zak I, Harant K, et al. Acute and chronic blood serum proteome changes in patients with methanol poisoning. Sci Rep. 2022;12:21379. https://doi.org/10.1038/s41598-022-25492-9

Tyanova S, Temu T, Cox J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc. 2016;11:2301-2309.

Elias JE, Gygi SP. Target-decoy search strategy for mass spectrometry-based proteomics. Methods Mol Biol. 2010;604:55-71.

Barker M, Rayens W. Partial least squares for discrimination. J Chemom. 2003;17:166-173.

Core Team R. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2022.

Nulali J, Zhan M, Zhang K, Tu P, Liu Y, Song H. Osteoglycin: an ECM factor regulating fibrosis and tumorigenesis. Biomolecules 2022;12:1674. https://doi.org/10.3390/biom12111674

Tanaka KI, Matsumoto E, Higashimaki Y, Katagiri T, Sugimoto T, Seino S, et al. Role of osteoglycin in the linkage between muscle and bone. J Biol Chem. 2012;287:11616-11628.

PubMed. Mimecan/osteoglycin-deficient mice have collagen fibril abnormalities. Accessed: July 20, 2023. https://pubmed-ncbi-nlm-nih-gov.ezproxy.is.cuni.cz/12432342/

Shanahan CM, Cary NRB, Osbourn JK, Weissberg PL. Identification of osteoglycin as a component of the vascular matrix. Arterioscler Thromb Vasc Biol. 1997;17:2437-2447.

Lomnytska MI, Becker S, Hellman K, Hellström AC, Souchelnytskyi S, Mints M, et al. Diagnostic protein marker patterns in squamous cervical cancer. Proteomics Clin Appl. 2010;4:17-31.

Lee JY, Eom EM, Kim DS, Ha-Lee YM, Lee DH. Analysis of gene expression profiles of gastric normal and cancer tissues by SAGE. Genomics 2003;82:78-85.

Röwer C, Koy C, Hecker M, Reimer T, Gerber B, Thiesen HJ, et al. Mass spectrometric characterization of protein structure details refines the proteome signature for invasive ductal breast carcinoma. J Am Soc Mass Spectrom. 2011;22:440-456.

Xu T, Zhang R, Dong M, Zhang Z, Li H, Zhan C, et al. Osteoglycin (OGN) inhibits cell proliferation and invasiveness in breast cancer via PI3K/Akt/mTOR signaling pathway. Onco Targets Ther. 2019;12:10639-19650.

PubMed. Elevated OGN expression correlates with the EMT signature and poor prognosis in ovarian carcinoma. Accessed: July 19, 2023. https://pubmed-ncbi-nlm-nih-gov.ezproxy.is.cuni.cz/31933863/

Qin W, Zhang J, Rong R, Zhang L, Gao H, Liu C, et al. Osteoglycin (OGN) promotes tumorigenesis of pancreatic cancer cell via targeting ID4. Tissue Cell. 2022;78:101867. https://doi.org/10.1016/J.TICE.2022.101867

Mei Y, Du Z, Hu C, Greenwald NF, Abedalthagafi M, Agar NYR, et al. Osteoglycin promotes meningioma development through downregulation of NF2 and activation of mTOR signaling. Cell Commun Signal. 2017;15:34. https://doi.org/10.1186/S12964-017-0189-7

Wang J, Ye C, Chen C, Xiong H, Xie B, Zhou J, et al. Glucose transporter GLUT1 expression and clinical outcome in solid tumors: a systematic review and meta-analysis. Oncotarget. 2017;8:16875-16886.

Wellberg EA, Johnson S, Finlay-Schultz J, Lewis AS, Terrell KL, Sartorius CA, et al. The glucose transporter GLUT1 is required for ErbB2-induced mammary tumorigenesis. Breast Cancer Res. 2016;18:131. https://doi.org/10.1186/s13058-016-0795-0

Simkova D, Kharaishvili G, Slabakova E, Murray PG, Bouchal J. Glycoprotein asporin as a novel player in tumor microenvironment and cancer progression. Biomed Papers. 2016;160:467-473.

Maris P, Blomme A, Palacios AP, Costanza B, Bellahcène A, Bianchi E, et al. Asporin is a fibroblast-derived TGF-β1 inhibitor and a tumor suppressor associated with good prognosis in breast cancer. PLoS Med. 2015;12:e1001871. https://doi.org/10.1371/journal.pmed.1001871

Satoyoshi R, Kuriyama S, Aiba N, Yashiro M, Tanaka M. Asporin activates coordinated invasion of scirrhous gastric cancer and cancer-associated fibroblasts. Oncogene 2015;34:650-660.

Li H, Zhang Z, Chen L, Sun X, Zhao Y, Guo Q, et al. Cytoplasmic Asporin promotes cell migration by regulating TGF-β/Smad2/3 pathway and indicates a poor prognosis in colorectal cancer. Cell Death Dis. 2019;10:109. https://doi.org/10.1038/s41419-019-1376-9

Rochette A, Boufaied N, Scarlata E, Hamel L, Brimo F, Whitaker HC, et al. Asporin is a stromally expressed marker associated with prostate cancer progression. Br J Cancer. 2017;116:775-784.

Zhan S, Li J, Ge W. Multifaceted roles of asporin in cancer: current understanding. Front Oncol. 2019;9:948. https://doi.org/10.3389/fonc.2019.00948

Li X, Zheng L, Zhang F, Hu J, Chou J, Liu Y, et al. STARD13-correlated CeRNA network inhibits EMT and metastasis of breast cancer. Oncotarge. 2016;7(17):23197-211.

Zhou G, Liu X, Xiong B, Sun Y. Homeobox B4 inhibits breast cancer cell migration by directly binding to StAR-related lipid transfer domain protein 13. Oncol Lett. 2017;14:4625-4632.

Zhang H, Wang F, Hu Y. STARD13 promotes hepatocellular carcinoma apoptosis by acting as a ceRNA for Fas. Biotechnol Lett. 2017;39:207-217.

Matsuyama Y, Suzuki M, Arima C, Huang QM, Tomida S, Takeuchi T, et al. Proteasomal non-catalytic subunit PSMD2 as a potential therapeutic target in association with various clinicopathologic features in lung adenocarcinomas. Mol Carcinog. 2011;50:301-309.

Zhao H, Lu G. Prognostic implication and immunological role of PSMD2 in lung adenocarcinoma. Front Genet. 2022;13:905581. https://doi.org/10.3389/fgene.2022.905581

Wang S, Wang H, Zhu S, Wang Z. PSMD2 promotes the progression of bladder cancer and is correlated with immune infiltration. Front Oncol. 2022;12:1058506. https://doi.org/10.3389/fonc.2022.1058506

Klepinin A, Zhang S, Klepinina L, Rebane-Klemm E, Terzic A, Kaambre T, et al. Adenylate kinase and metabolic signaling in cancer cells. Front Oncol. 2020;10:660. https://doi.org/10.3389/fonc.2020.00660

Fagerberg L, Hallstrom BM, Oksvold P, Kampf C, Djureinovic D, Odeberg J, et al. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteomics. 2014;13:397-406.

Liu H, Pu Y, Amina Q, Wang Q, Zhang M, Song J, et al. Prognostic and therapeutic potential of Adenylate kinase 2 in lung adenocarcinoma. Sci Rep. 2019;9:17757. https://doi.org/10.1038/s41598-019-53594-4

Liu Z, Tang C, Teng X, Mohamed ZA, Fan J. Adenylate kinase 2 is a biomarker related to the prognosis of glioma and the immune microenvironment. J Clin Lab Anal. 2023;37:e24892. https://doi.org/10.1002/jcla.24892

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...