Protective Effect of Daidzein against Diethylnitrosamine/Carbon Tetrachloride-Induced Hepatocellular Carcinoma in Male Rats

. 2023 Aug 29 ; 12 (9) : . [epub] 20230829

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37759583

Grantová podpora
Deanship of Scientific Research at King Saud University for funding the work through the research group Project no. RG-1436-004 Deanship of Scientific Research at King Saud University for funding the work through the research group Project no. RG-1436-004

Hepatocellular carcinoma (HCC) is the second-largest cause of death among all cancer types. Many drugs have been used to treat the disease for a long time but have been mostly discontinued because of their side effects or the development of resistance in the patients with HCC. The administration of DZ orally is a great focus to address the clinical crisis. Daidzein (DZ) is a prominent isoflavone polyphenolic chemical found in soybeans and other leguminous plants. It has various pharmacological effects, including anti-inflammatory, antihemolytic, and antioxidant. This present study investigates the protective effect of DZ on chemically induced HCC in rat models. The DZ was administered orally four weeks before HCC induction and continued during treatment. Our study included four treatment groups: control (group 1, without any treatment), HCC-induced rats (group II), an HCC group treated with DZ at 20 mg/kg (group III), and an HCC group treated with DZ at 40 mg/kg (group IV). HCC rats showed elevation in all the HCC markers (AFP, GPC3, and VEGF), liver function markers (ALP, ALT, and AST), inflammatory markers (IL-6, TNF-α, and CRP), and lipid markers concomitant with a decrease in antioxidant enzymes and protein. However, groups III and IV demonstrated dose-dependent alleviation in the previous parameters resulting from HCC. In addition, the high dose of DZ reduces many hepatological changes in HCC rats. All study parameters improved with DZ administration. Due to its antioxidant and anti-inflammatory characteristics, DZ is a promising HCC treatment option for clinical use.

Zobrazit více v PubMed

O’Connor S., Ward J., Watson M., Momin B., Richardson L. Hepatocellular carcinoma-United States, 2001–2006. Morb. Mortal. Wkly. Rep. 2010;59:517–520. PubMed

Sartorius K., Sartorius B., Aldous C., Govender P., Madiba T. Global and country underestimation of hepatocellular carcinoma (HCC) in 2012 and its implications. Cancer Epidemiol. 2015;39:284–290. doi: 10.1016/j.canep.2015.04.006. PubMed DOI

Jee S.H., Ohrr H., Sull J.W., Samet J.M. Cigarette smoking, alcohol drinking, hepatitis B, and risk for hepatocellular carcinoma in Korea. J. Natl. Cancer Inst. 2004;96:1851–1856. doi: 10.1093/jnci/djh334. PubMed DOI

White D.L., Tavakoli-Tabasi S., Kuzniarek J., Pascua R., Ramsey D.J., El-Serag H.B. Higher serum testosterone is associated with increased risk of advanced hepatitis C–related liver disease in males. Hepatology. 2012;55:759–768. doi: 10.1002/hep.24618. PubMed DOI PMC

Balogh J., Victor III D., Asham E.H., Burroughs S.G., Boktour M., Saharia A., Li X., Ghobrial R.M., Monsour H.P. Hepatocellular carcinoma: A review. J. Hepatocell. Carcinoma. 2016;3:41–53. doi: 10.2147/JHC.S61146. PubMed DOI PMC

Bruix J., Sherman M. Management of hepatocellular carcinoma: An update. Hepatology. 2011;53:1020. doi: 10.1002/hep.24199. PubMed DOI PMC

Bosch F.X., Ribes J., Díaz M., Cléries R. Primary liver cancer: Worldwide incidence and trends. Gastroenterology. 2004;127:S5–S16. doi: 10.1053/j.gastro.2004.09.011. PubMed DOI

Marrero J.A., Fontana R.J., Fu S., Conjeevaram H.S., Su G.L., Lok A.S. Alcohol, tobacco and obesity are synergistic risk factors for hepatocellular carcinoma. J. Hepatol. 2005;42:218–224. doi: 10.1016/j.jhep.2004.10.005. PubMed DOI

Gao C., Fang L., Zhao H.-C., Li J.-T., Yao S.-K. Potential role of diabetes mellitus in the progression of cirrhosis to hepatocellular carcinoma: A cross-sectional case-control study from Chinese patients with HBV infection. Hepatobiliary Pancreat. Dis. Int. 2013;12:385–393. doi: 10.1016/S1499-3872(13)60060-0. PubMed DOI

Wang C., Wang X., Gong G., Ben Q., Qiu W., Chen Y., Li G., Wang L. Increased risk of hepatocellular carcinoma in patients with diabetes mellitus: A systematic review and meta-analysis of cohort studies. Int. J. Cancer. 2012;130:1639–1648. doi: 10.1002/ijc.26165. PubMed DOI

Liu Y., Wu F. Global burden of aflatoxin-induced hepatocellular carcinoma: A risk assessment. Environ. Health Perspect. 2010;118:818–824. doi: 10.1289/ehp.0901388. PubMed DOI PMC

Ko C., Siddaiah N., Berger J., Gish R., Brandhagen D., Sterling R.K., Cotler S.J., Fontana R.J., McCashland T.M., Han S.H., et al. Prevalence of hepatic iron overload and association with hepatocellular cancer in end-stage liver disease: Results from the National Hemochromatosis Transplant Registry. Liver Int. 2007;27:1394–1401. doi: 10.1111/j.1478-3231.2007.01596.x. PubMed DOI

Zhao Y.-J., Ju Q., Li G.-C. Tumor markers for hepatocellular carcinoma. Mol. Clin. Oncol. 2013;1:593–598. doi: 10.3892/mco.2013.119. PubMed DOI PMC

Wang L., Yao M., Pan L.-H., Qian Q., Yao D.-F. Glypican-3 is a biomarker and a therapeutic target of hepatocellular carcinoma. Hepatobiliary Pancreat. Dis. Int. 2015;14:361–366. doi: 10.1016/S1499-3872(15)60396-4. PubMed DOI

El-Saadany S., El-Demerdash T., Helmy A., Mayah W.W., Hussein B.E.-S., Hassanien M., Elmashad N., Fouad M.A., Basha E.A. Diagnostic value of glypican-3 for hepatocellular carcinomas. Asian Pac. J. Cancer Prev. 2018;19:811. PubMed PMC

Abdelgawad I.A., Mossallam G.I., Radwan N.H., Elzawahry H.M., Elhifnawy N.M. Can Glypican3 be diagnostic for early hepatocellular carcinoma among Egyptian patients? Asian Pac. J. Cancer Prev. 2013;14:7345–7349. doi: 10.7314/APJCP.2013.14.12.7345. PubMed DOI

Poon R.T.-P., Fan S.-T., Wong J. Clinical significance of angiogenesis in gastrointestinal cancers: A target for novel prognostic and therapeutic approaches. Ann. Surg. 2003;238:9. doi: 10.1097/01.sla.0000075047.47175.35. PubMed DOI PMC

Zhu A.X., Park J.O., Ryoo B.-Y., Yen C.-J., Poon R., Pastorelli D., Blanc J.-F., Chung H.C., Baron A.D., Pfiffer T.E.F., et al. Ramucirumab versus placebo as second-line treatment in patients with advanced hepatocellular carcinoma following first-line therapy with sorafenib (REACH): A randomised, double-blind, multicentre, phase 3 trial. Lancet Oncol. 2015;16:859–870. doi: 10.1016/S1470-2045(15)00050-9. PubMed DOI

Shah K., Al-Haidari A., Sun J., Kazi J.U. T cell receptor (TCR) signaling in health and disease. Signal Transduct. Target. Ther. 2021;6:412. doi: 10.1038/s41392-021-00823-w. PubMed DOI PMC

Alshehri M.M., Sharifi-Rad J., Herrera-Bravo J., Jara E.L., Salazar L.A., Kregiel D., Uprety Y., Akram M., Iqbal M., Martorell M., et al. Therapeutic potential of isoflavones with an emphasis on daidzein. Oxidative Med. Cell. Longev. 2021;2021:6331630. doi: 10.1155/2021/6331630. PubMed DOI PMC

Cassidy A. Potential risks and benefits of phytoestrogen-rich diets. Int. J. Vitam. Nutr. Res. 2003;73:120–126. doi: 10.1024/0300-9831.73.2.120. PubMed DOI

Dwiecki K., Neunert G., Polewski P., Polewski K. Antioxidant activity of daidzein, a natural antioxidant, and its spectroscopic properties in organic solvents and phosphatidylcholine liposomes. J. Photochem. Photobiol. B Biol. 2009;96:242–248. doi: 10.1016/j.jphotobiol.2009.06.012. PubMed DOI

Rohrdanz E., Ohler S., Tran-Thi Q.-H., Kahl R. The phytoestrogen daidzein affects the antioxidant enzyme system of rat hepatoma H4IIE cells. J. Nutr. 2002;132:370–375. doi: 10.1093/jn/132.3.370. PubMed DOI

Miyake Y., Sasaki S., Ohya Y., Miyamoto S., Matsunaga I., Yoshida T., Hirota Y., Oda H. Soy, isoflavones, and prevalence of allergic rhinitis in Japanese women: The Osaka Maternal and Child Health Study. J. Allergy Clin. Immunol. 2005;115:1176–1183. doi: 10.1016/j.jaci.2005.02.016. PubMed DOI

Chinta S.J., Ganesan A., Reis-Rodrigues P., Lithgow G.J., Andersen J.K. Anti-inflammatory role of the isoflavone diadzein in lipopolysaccharide-stimulated microglia: Implications for Parkinson’s disease. Neurotox. Res. 2013;23:145–153. doi: 10.1007/s12640-012-9328-5. PubMed DOI PMC

Aras A.B., Guven M., Akman T., Ozkan A., Sen H.M., Duz U., Kalkan Y., Silan C., Cosar M. Neuroprotective effects of daidzein on focal cerebral ischemia injury in rats. Neural Regen. Res. 2015;10:146–152. doi: 10.4103/1673-5374.150724. PubMed DOI PMC

Yuan W., Chen Q., Zeng J., Xiao H., Huang Z.-h., Li X., Lei Q. 3′-Daidzein sulfonate sodium improves mitochondrial functions after cerebral ischemia/reperfusion injury. Neural Regen. Res. 2017;12:235–241. PubMed PMC

Wei J., Yang F., Gong C., Shi X., Wang G. Protective effect of daidzein against streptozotocin-induced Alzheimer’s disease via improving cognitive dysfunction and oxidative stress in rat model. J. Biochem. Mol. Toxicol. 2019;33:e22319. doi: 10.1002/jbt.22319. PubMed DOI

Toktay E., Gürbüz M.A., Tuğba B., Özgül Ö., ERBAŞ E., Ugan R.A., Selli J. Protective effect of daidzein on ovarian ischemia-reperfusion injury in rats. Cukurova Med. J. 2022;47:102–110. doi: 10.17826/cumj.993250. DOI

Guo J., Kang G., Xiao B., Liu D., Zhang S. Effect of daidzein on cell growth, cell cycle, and telomerase activity of human cervical cancer in vitro. Int. J. Gynecol. Cancer. 2004;14:882–888. doi: 10.1136/ijgc-00009577-200409000-00022. PubMed DOI

Adjakly M., Ngollo M., Boiteux J.-P., Bignon Y.-J., Guy L., Bernard-Gallon D. Genistein and daidzein: Different molecular effects on prostate cancer. Anticancer Res. 2013;33:39–44. PubMed

Kucuk O. Soy foods, isoflavones, and breast cancer. Cancer. 2017;123:1901–1903. doi: 10.1002/cncr.30614. PubMed DOI

Hua F., Li C.H., Chen X.G., Liu X.P. Daidzein exerts anticancer activity towards SKOV3 human ovarian cancer cells by inducing apoptosis and cell cycle arrest, and inhibiting the Raf/MEK/ERK cascade. Int. J. Mol. Med. 2018;41:3485–3492. doi: 10.3892/ijmm.2018.3531. PubMed DOI

Duchnik E., Kruk J., Baranowska-Bosiacka I., Pilutin A., Maleszka R., Marchlewicz M. Effects of the Soy Isoflavones, Genistein and Daidzein, on Male Rats’ Skin. Adv. Dermatol. Allergol. 2019;36:760–766. doi: 10.5114/ada.2019.87280. PubMed DOI PMC

Singh B.N., Singh B.R., Sarma B., Singh H. Potential chemoprevention of N-nitrosodiethylamine-induced hepatocarcinogenesis by polyphenolics from Acacia nilotica bark. Chem. Biol. Interact. 2009;181:20–28. doi: 10.1016/j.cbi.2009.05.007. PubMed DOI

Chan F.K.-M., Moriwaki K., Rosa M.J.D. Immune Homeostasis. Springer; Berlin/Heidelberg, Germany: 2013. Detection of necrosis by release of lactate dehydrogenase activity; pp. 65–70. PubMed PMC

Hanhineva K., Törrönen R., Bondia-Pons I., Pekkinen J., Kolehmainen M., Mykkänen H., Poutanen K. Impact of dietary polyphenols on carbohydrate metabolism. Int. J. Mol. Sci. 2010;11:1365–1402. doi: 10.3390/ijms11041365. PubMed DOI PMC

Aboushanab S.A., Khedr S.M., Gette I.F., Danilova I.G., Kolberg N.A., Ravishankar G.A., Ambati R.R., Kovaleva E.G. Isoflavones derived from plant raw materials: Bioavailability, anticancer, anti-aging potentials, and microbiome modulation. Crit. Rev. Food Sci. Nutr. 2022;63:261–287. doi: 10.1080/10408398.2021.1946006. PubMed DOI

Feriani A., Tir M., Hamed M., Sila A., Nahdi S., Alwasel S., Harrath A.H., Tlili N. Multidirectional insights on polysaccharides from Schinus terebinthifolius and Schinus molle fruits: Physicochemical and functional profiles, in vitro antioxidant, anti-genotoxicity, antidiabetic, and antihemolytic capacities, and in vivo anti-inflammatory and anti-nociceptive properties. Int. J. Biol. Macromol. 2020;165:2576–2587. PubMed

Yahya R., Al-Rajhi A.M., Alzaid S.Z., Al Abboud M.A., Almuhayawi M.S., Al Jaouni S.K., Selim S., Ismail K.S., Abdelghany T.M. Molecular docking and efficacy of Aloe vera gel based on chitosan nanoparticles against Helicobacter pylori and its antioxidant and anti-inflammatory activities. Polymers. 2022;14:2994. doi: 10.3390/polym14152994. PubMed DOI PMC

Wungu C.D.K., Ariyanto F.C., Prabowo G.I., Soetjipto, Handajani R. Association between Five Types of Tumor Necrosis Factor-α Gene Polymorphism and Hepatocellular Carcinoma Risk: A Meta-Analysis. BMC Cancer. 2020;20:1134. doi: 10.1186/s12885-020-07606-6. PubMed DOI PMC

Meischl T., Rasoul-Rockenschaub S., Györi G., Sieghart W., Reiberger T., Trauner M., Soliman T., Berlakovich G., Pinter M. C-Reactive Protein Is an Independent Predictor for Hepatocellular Carcinoma Recurrence after Liver Transplantation. PLoS ONE. 2019;14:e0216677. doi: 10.1371/journal.pone.0216677. PubMed DOI PMC

Jiang T., Zhou C., Ren S. Role of IL-2 in Cancer Immunotherapy. Oncoimmunology. 2016;5:e1163462. doi: 10.1080/2162402X.2016.1163462. PubMed DOI PMC

Ding Y.-F., Wu Z.-H., Wei Y.-J., Shu L., Peng Y.-R. Hepatic inflammation-fibrosis-cancer axis in the rat hepatocellular carcinoma induced by diethylnitrosamine. J. Cancer Res. Clin. Oncol. 2017;143:821–834. doi: 10.1007/s00432-017-2364-z. PubMed DOI

Zheng W., Liu T., Sun R., Yang L., An R., Xue Y. Daidzein induces choriocarcinoma cell apoptosis in a dose-dependent manner via the mitochondrial apoptotic pathway. Mol. Med. Rep. 2018;17:6093–6099. doi: 10.3892/mmr.2018.8604. PubMed DOI

Jin S., Zhang Q., Kang X., Wang J., Zhao W. Daidzein induces MCF-7 breast cancer cell apoptosis via the mitochondrial pathway. Ann. Oncol. 2010;21:263–268. doi: 10.1093/annonc/mdp499. PubMed DOI

Liang X.-L., Li M., Li J., Wang X.-L. Equol induces apoptosis in human hepatocellular carcinoma SMMC-7721 cells through the intrinsic pathway and the endoplasmic reticulum stress pathway. Anticancer Drugs. 2014;25:633–640. doi: 10.1097/CAD.0000000000000085. PubMed DOI

Hedlund T.E., Johannes W.U., Miller G.J. Soy isoflavonoid equol modulates the growth of benign and malignant prostatic epithelial cells in vitro. Prostate. 2003;54:68–78. doi: 10.1002/pros.10137. PubMed DOI

Guo M., Hay B.A. Cell proliferation and apoptosis. Curr. Opin. Cell Biol. 1999;11:745–752. doi: 10.1016/S0955-0674(99)00046-0. PubMed DOI

Shen J.C., Klein R.D., Wei Q., Guan Y., Contois J.H., Wang T.T., Chang S., Hursting S.D. Low-dose genistein induces cyclin-dependent kinase inhibitors and G1 cell-cycle arrest in human prostate cancer cells. Mol. Carcinog. 2000;29:92–102. doi: 10.1002/1098-2744(200010)29:2<92::AID-MC6>3.0.CO;2-Q. PubMed DOI

Chen G., Zhou D., Li X.-Z., Jiang Z., Tan C., Wei X.-Y., Ling J., Jing J., Liu F., Li N. A natural chalcone induces apoptosis in lung cancer cells: 3D-QSAR, docking and an in vivo/vitro assay. Sci. Rep. 2017;7:10729. doi: 10.1038/s41598-017-11369-9. PubMed DOI PMC

Mhone T.G., Chen M.-C., Kuo C.-H., Shih T.-C., Yeh C.-M., Wang T.-F., Chen R.-J., Chang Y.-C., Kuo W.-W., Huang C.-Y. Daidzein synergizes with gefitinib to induce ROS/JNK/c-Jun activation and inhibit EGFR-STAT/AKT/ERK pathways to enhance lung adenocarcinoma cells chemosensitivity. Int. J. Biol. Sci. 2022;18:3636–3652. doi: 10.7150/ijbs.71870. PubMed DOI PMC

Kumar V., Chauhan S.S. Daidzein Induces Intrinsic Pathway of Apoptosis along with ER α/β Ratio Alteration and ROS Production. Asian Pac. J. Cancer Prev. 2021;22:603. doi: 10.31557/APJCP.2021.22.2.603. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace