Exploring the Synthetic Chemistry of Phenyl-3-(5-aryl-2-furyl)- 2-propen-1-ones as Urease Inhibitors: Mechanistic Approach through Urease Inhibition, Molecular Docking and Structure-Activity Relationship

. 2023 Aug 30 ; 11 (9) : . [epub] 20230830

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37760869

Grantová podpora
Researchers Supporting Project Number (RSP2023R457) The Researchers Supporting Project Number (RSP2023R457), King Saud University, Riyadh, Saudi Arabia.

Furan chalcone scaffolds belong to the most privileged and promising oxygen-containing heterocyclic class of compounds, which have a wide spectrum of therapeutic applications in the field of pharmaceutics, pharmacology, and medicinal chemistry. This research described the synthesis of a series of twelve novel and seven reported furan chalcone (conventional synthetic approach) analogues 4a-s through the application of microwave-assisted synthetic methodology and evaluated for therapeutic inhibition potential against bacterial urease enzyme. In the first step, a series of nineteen substituted 5-aryl-2-furan-2-carbaldehyde derivatives 3a-s were achieved in moderate to good yields (40-70%). These substituted 5-aryl-2-furan-2-carbaldehyde derivatives 3a-s were condensed with acetophenone via Claisen-Schmidt condensation to furnish 19 substituted furan chalcone scaffolds 4a-s in excellent yields (85-92%) in microwave-assisted synthetic approach, while in conventional methodology, these furan chalcone 4a-s were furnished in good yield (65-90%). Furan chalcone structural motifs 4a-s were characterized through elemental analysis and spectroscopic techniques. These nineteen (19)-afforded furan chalcones 4a-s were screened for urease inhibitory chemotherapeutic efficacy and most of the furan chalcones displayed promising urease inhibition activity. The most active urease inhibitors were 1-phenyl-3-[5-(2',5'-dichlorophenyl)-2-furyl]-2-propen-1-one 4h with an IC50 value of 16.13 ± 2.45 μM, and 1-phenyl- 3-[5-(2'-chlorophenyl)-2-furyl] -2-propen-1-one 4s with an IC50 value of 18.75 ± 0.85 μM in comparison with reference drug thiourea (IC50 = 21.25 ± 0.15 μM). These furan chalcone derivatives 4h and 4s are more efficient urease inhibitors than reference drug thiourea. Structure-activity relationship (SAR) revealed that the 2,5-dichloro 4h and 2-chloro 4s moiety containing furan chalcone derivatives may be considered as potential lead reagents for urease inhibition. The in silico molecular docking study results are in agreement with the experimental biological findings. The results of this study may be helpful in the future drug discovery and designing of novel efficient urease inhibitory agents from this biologically active class of furan chalcones.

Zobrazit více v PubMed

Karplus P.A., Pearson M.A., Hausinger R.P. 70 Years of Crystalline Urease: What Have We Learned? Acc. Chem. Res. 1997;30:330–337. doi: 10.1021/ar960022j. DOI

Li M., Ding W., Baruah B., Crans D.C., Wang R. Inhibition of protein tyrosine phosphatase 1B and alkaline phosphatase by bis(maltolato)oxovanadium (IV) J. Inorg. Biochem. 2008;102:1846–1853. doi: 10.1016/j.jinorgbio.2008.06.007. PubMed DOI

Mobley H.L., Hausinger R.P. Microbial ureases: Significance, regulation, and molecular characterization. Microbiol. Rev. 1989;53:85–108. doi: 10.1128/mr.53.1.85-108.1989. PubMed DOI PMC

Collins C.M., D’Orazio S.E.F. Bacterial ureases: Structure, regulation of expression and role in pathogenesis. Mol. Microbiol. 1993;9:907–913. doi: 10.1111/j.1365-2958.1993.tb01220.x. PubMed DOI

Montecucco C., Rappuoli R. Living dangerously: How Helicobacter pylori survives in the human stomach. Nat. Rev. Mol. Cell Biol. 2001;2:457–466. doi: 10.1038/35073084. PubMed DOI

Williams R.J.P. Metallo-enzyme catalysis. Chem. Commun. 2003;10:1109–1113. doi: 10.1039/b211281g. PubMed DOI

Ibrar A., Khan I., Abbas N. Structurally Diversified Heterocycles and Related Privileged Scaffolds as Potential Urease Inhibitors: A Brief Overview. Archiv der Pharmazie. 2013;346:423–446. doi: 10.1002/ardp.201300041. PubMed DOI

Kafarski P., Talma M. Recent advances in design of new urease inhibitors: A review. J. Adv. Res. 2018;13:101–112. doi: 10.1016/j.jare.2018.01.007. PubMed DOI PMC

Irfan A., Faiz S., Rasul A., Zafar R., Zahoor A.F., Kotwica-Mojzych K., Mojzych M. Exploring the Synergistic Anticancer Potential of Benzofuran–Oxadiazoles and Triazoles: Improved Ultrasound- and Microwave-Assisted Synthesis, Molecular Docking, Hemolytic, Thrombolytic and Anticancer Evaluation of Furan-Based Molecules. Molecules. 2022;27:1023. doi: 10.3390/molecules27031023. PubMed DOI PMC

Irfan A., Tahir O.A., Umer M., Ahmad S., Kousar H. A review on biological studies of Quinoxaline derivative. World J. Pharm. Pharm. Sci. 2017;6:11–30.

Srikrishna D., Godugu C., Dubey P.K. A Review on Pharmacological Properties of Coumarins. Mini Rev. Med. Chem. 2018;18:113–141. doi: 10.2174/1389557516666160801094919. PubMed DOI

Hernández-López H., Tejada-Rodríguez C.J., Leyva-Ramos S. A Panoramic Review of Benzimidazole Derivatives and their Potential Biological Activity. Mini Rev. Med. Chem. 2022;22:1268–1280. doi: 10.2174/1389557522666220104150051. PubMed DOI

Irfan A., Batool F., Irum S., Ullah S., Umer M., Shaheen R., Chand A.J. A Therapeutic Journey of Sulfonamide Derivatives as Potent Anti-Cancer Agents: A Review. WJPR. 2018;7:257–270.

Shahzadi I., Zahoor A.F., Tüzün B., Mansha A., Anjum M.N., Rasul A., Irfan A., Kotwica-Mojzych K., Mojzych M. Repositioning of acefylline as anti-cancer drug: Synthesis, anticancer and computational studies of azomethines derived from acefylline tethered 4-amino-3-mercapto-1,2,4-triazole. PLoS ONE. 2022;17:e0278027. doi: 10.1371/journal.pone.0278027. PubMed DOI PMC

Alghamdi S.S., Suliman R.S., Almutairi K., Kahtani K., Aljatli D. Imidazole as a Promising Medicinal Scaffold: Current Status and Future Direction. Drug Des. Dev. Ther. 2021;29:3289–3312. doi: 10.2147/DDDT.S307113. PubMed DOI PMC

Aziz H., Zahoor A.F., Shahzadi I., Irfan A. Recent Synthetic Methodologies Towards the Synthesis of Pyrazoles. Polycycl. Aromat. Compd. 2019;41:698–720. doi: 10.1080/10406638.2019.1614638. DOI

Irfan A., Ullah S., Anum A., Jabeen N., Zahoor A.F., Kanwal H., Kotwica-Mojzych K., Mojzych M. Synthetic Transformations and Medicinal Significance of 1,2,3-Thiadiazoles Derivatives: An Update. Appl. Sci. 2021;11:5742. doi: 10.3390/app11125742. DOI

Li W.-Y., Ni W.-W., Ye Y.-X., Fang H.-L., Pan X.-M., He J.-L., Zhou T.-L., Yi J., Liu S.-S., Zhou M., et al. N-monoarylacetothioureas as potent urease inhibitors: Synthesis, SAR, and biological evaluation. J. Enzym. Inhib. Med. Chem. 2020;35:404–413. doi: 10.1080/14756366.2019.1706503. PubMed DOI PMC

Ghomi M.K., Noori M., Montazer M.N., Zomorodian K., Dastyafteh N., Yazdanpanah S., Sayahi M.H., Javanshir S., Nouri A., Asadi M., et al. [1,2,4]triazolo[3,4-b][1,3,4]thiadiazole derivatives as new therapeutic candidates against urease positive microorganisms: Design, synthesis, pharmacological evaluations, and in silico studies. Sci. Rep. 2023;13:10136. doi: 10.1038/s41598-023-37203-z. PubMed DOI PMC

Khan I., Ali S., Hameed S., Rama N.H., Hussain M.T., Wadood A., Uddin R., Ul-Haq Z., Khan A., Ali S., et al. Synthesis, antioxidant activities and urease inhibition of some new 1,2,4-triazole and 1,3,4-thiadiazole derivatives. Eur. J. Med. Chem. 2010;45:5200–5207. doi: 10.1016/j.ejmech.2010.08.034. PubMed DOI

Moghadam E.S., Al-Sadi A.M., Talebi M., Amanlou M., Amini M., Abdel-Jalil R. Novel benzimidazole derivatives; synthesis, bioactivity and molecular docking study as potent urease inhibitors. DARU J. Pharm. Sci. 2022;30:29–37. doi: 10.1007/s40199-021-00427-3. PubMed DOI PMC

Mishra H., Parrill A.L., Williamson J.S. Tree-dimensional quantitative structure-activity relationship and comparative molecular feld analysis of dipeptide hydroxamic acid Helicobacter pylori urease inhibitors. Antimicrob. Agents Chemother. 2002;46:2613–2618. doi: 10.1128/AAC.46.8.2613-2618.2002. PubMed DOI PMC

Dastyafteh N., Noori M., Montazer M.N., Zomorodian K., Yazdanpanah S., Iraji A., Ghomi M.K., Javanshir S., Asadi M., Dianatpour M., et al. New thioxothiazolidinyl-acetamides derivatives as potent urease inhibitors: Design, synthesis, in vitro inhibition, and molecular dynamic simulation. Sci. Rep. 2023;13:21. doi: 10.1038/s41598-022-27234-3. PubMed DOI PMC

Irfan A., Faisal S., Ahmad S., Al-Hussain S.A., Javed S., Zahoor A.F., Parveen B., Zaki M.E.A. Structure-Based Virtual Screening of Furan-1,3,4-Oxadiazole Tethered N-phenylacetamide Derivatives as Novel Class of hTYR and hTYRP1 Inhibitors. Pharmaceuticals. 2023;16:344. doi: 10.3390/ph16030344. PubMed DOI PMC

Zhuang C., Zhang W., Sheng C., Zhang W., Xing C., Miao Z. Chalcone: A Privileged Structure in Medicinal Chemistry. Chem. Rev. 2017;117:7762–7810. doi: 10.1021/acs.chemrev.7b00020. PubMed DOI PMC

Rajendran G., Bhanu D., Aruchamy B., Ramani P., Pandurangan N., Bobba K.N., Oh E.J., Chung H.Y., Gangadaran P., Ahn B.-C. Chalcone: A Promising Bioactive Scaffold in Medicinal Chemistry. Pharmaceuticals. 2022;15:1250. doi: 10.3390/ph15101250. PubMed DOI PMC

Sultan A., Shajahan S., Ahamad T., Alshehri S.M., Sajjad N., Nisa M., Rehman M.H.U., Torun L., Khalid M., Acevedo R. Silica-supported heterogeneous catalysts-mediated synthesis of chalcones as potent urease inhibitors: In vitro and molecular docking studies. Monatsh. Chem. 2020;151:123–133. doi: 10.1007/s00706-019-02534-z. DOI

Olleik H., Yahiaoui S., Roulier B., Courvoisier-Dezord E., Perrier J., Pérès B., Hijazi A., Baydoun E., Raymond J., Boumendjel A., et al. Aurone derivatives as promising antibacterial agents against resistant Gram-positive pathogens. Eur. J. Med. Chem. 2019;165:133–141. doi: 10.1016/j.ejmech.2019.01.022. PubMed DOI

Irfan A., Zahoor A.F., Kamal S., Hassan M., Kloczkowski A. Ultrasonic-Assisted Synthesis of Benzofuran Appended Oxadiazole Molecules as Tyrosinase Inhibitors: Mechanistic Approach through Enzyme Inhibition, Molecular Docking, Chemoinformatics, ADMET and Drug-Likeness Studies. Int. J. Mol. Sci. 2022;23:10979. doi: 10.3390/ijms231810979. PubMed DOI PMC

Irfan A., Faisal S., Zahoor A.F., Noreen R., Al-Hussain S.A., Tuzun B., Javaid R., Elhenawy A.A., Zaki M.E.A., Ahmad S., et al. In Silico Development of Novel Benzofuran-1,3,4-Oxadiazoles as Lead Inhibitors of M. tuberculosis Polyketide Synthase 13. Pharmaceuticals. 2023;16:829. doi: 10.3390/ph16060829. PubMed DOI PMC

Aslam S., Asif N., Khan M.N., Khan M.A., Munawar M.A., Nasrullah M. Synthesis of Novel Arylfurfurylchalcones. Asian J. Chem. 2013;25:7738–7742. doi: 10.14233/ajchem.2013.14590A. DOI

Irfan A., Zahoor A.F., Rasul A., Al-Hussain S.A., Faisal S., Ahmad S., Noor R., Muhammed M.T., Zaki M.E.A. BTEAC Catalyzed Ultrasonic-Assisted Synthesis of Bromobenzofuran-Oxadiazoles: Unravelling Anti-HepG-2 Cancer Therapeutic Potential through In Vitro and In Silico Studies. Int. J. Mol. Sci. 2023;24:3008. doi: 10.3390/ijms24033008. PubMed DOI PMC

Ahmad M.R., Sastry V.G., Bano N., Anwar S. Synthesis of novel chalcone derivatives by conventional and microwave irradiation methods and their pharmacological activities. Arab. J. Chem. 2016;9:S931–S935. doi: 10.1016/j.arabjc.2011.09.002. DOI

Holla B.S., Veerendra B., Shivanandaa M.K. Non-linear optical properties of new arylfuranylpropenones. J. Cryst. Growth. 2004;263:532–535. doi: 10.1016/j.jcrysgro.2003.11.070. DOI

Ibrar A., Kazmi M., Khan A., Halim S.A., Saeed A., Mehsud S., AlHarrasi A., Khan I. Robust therapeutic potential of carbazole-triazine hybrids as a new class of urease inhibitors: A distinctive combination of nitrogen-containing heterocycles. Bioorg. Chem. 2020;95:103479–103482. doi: 10.1016/j.bioorg.2019.103479. PubMed DOI

Wahid S., Jahangir S., Versiani M.A., Khan K.M., Salar U., Ashraf M., Farzand U., Wadood A., Taha M., Perveen S. Atenolol Thiourea Hybrid as Potent Urease Inhibitors: Design, Biology-Oriented Drug Synthesis, Inhibitory Activity Screening, and Molecular Docking Studies. Bioorg. Chem. 2020;94:103359–103362. doi: 10.1016/j.bioorg.2019.103359. PubMed DOI

Pervez H., Chohan Z.H., Ramzan M., Nasim F.-U.-H., Khan K.M. Synthesis and biological evaluation of some new N4-substituted isatin-3-thiosemicarbazones. J. Enzym. Inhib. Med. Chem. 2009;24:437–446. doi: 10.1080/14756360802188420. PubMed DOI

AL-Hazimi H.M.A., Al-Alshaikh M.A. Microwave assisted synthesis of substituted fu-ran-2-carboxaldehydes and their reactions. J. Saudi Chem. Soc. 2010;14:373–382. doi: 10.1016/j.jscs.2010.04.009. DOI

Brain C.T., Hallett A., Ko S.Y. Thioamide Synthesis:  Thioacyl-N-phthalimides as Thio-acylating Agents. J. Org. Chem. 1997;62:3808–3809. doi: 10.1021/jo970528v. DOI

Holla B.S., Akberali P.M., Shivananda M.K. Studies on nitrophenylfuran derivatives: Part XII. Synthesis, characterization, antibacterial and antiviral activities of some nitro-phenylfurfurylidene-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazines. Farmaco. 2002;56:919–927. doi: 10.1016/S0014-827X(01)01124-7. PubMed DOI

Holla B.S., Akberali P.M., Shivananda M.K. Studies on arylfuran derivatives: Part X. Synthesis and antibacterial properties of arylfuryl-Δ2-pyrazolines. Farmaco. 2000;55:256–263. doi: 10.1016/S0014-827X(00)00030-6. PubMed DOI

Puterová Z., Krutošíková A., Lyčka A., Ďurčeková T. Reactions of Substituted Furan-2-carboxaldehydes and Furo[b]pyrrole Type Aldehydes with Benzothiazolium Salts. Molecules. 2004;9:241–255. doi: 10.3390/90400241. PubMed DOI PMC

Svane S., Sigurdarson J.J., Finkenwirth F., Eitinger T., Karring H. Inhibition of Urease Activity by Different Compounds Provides Insight into the Modulation and Association of Bacterial Nickel Import and Ureolysis. Sci. Rep. 2020;10:8503. doi: 10.1038/s41598-020-65107-9. PubMed DOI PMC

Zambelli B., Mazzei L., Ciurli S. Intrinsic Disorder in the Nickel-Dependent Urease Network. Prog. Mol. Biol. Transl. Sci. 2020;174:307–330. PubMed

Martin P.R., Hausinger R.P. Site-Directed Mutagenesis of the Active Site Cysteine in Klebsiella Aerogenes Urease. J. Biol. Chem. 1992;267:20024–20027. doi: 10.1016/S0021-9258(19)88659-3. PubMed DOI

Ansari F.L., Wadood A., Ullah A., Iftikhar F., Ul-Haq Z. In silico studies of urease inhibitors to explore ligand-enzyme interactions. J. Enzym. Inhib. Med. Chem. 2009;24:151–156. doi: 10.1080/14756360801945598. PubMed DOI

Trott O., Olson A.J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2009;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC

Ha N.C., Oh S.T., Sung J.Y., Cha K.A., Lee M.H., Oh B.H. Supramolecular Assembly and Acid Resistance of Helicobacter Pylori Urease. Nat. Struct. Biol. 2001;8:505–509. doi: 10.1038/88563. PubMed DOI

Daina A., Michielin O., Zoete V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017;7:42717. doi: 10.1038/srep42717. PubMed DOI PMC

Xiong G., Wu Z., Yi J., Fu L., Yang Z., Hsieh C., Yin M., Zeng X., Wu C., Lu A., et al. ADMETlab 2.0: An Integrated Online Platform for Accurate and Comprehensive Predictions of ADMET Properties. Nucleic Acids Res. 2021;49:W5–W14. doi: 10.1093/nar/gkab255. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...