Bee Venom Causes Oxidative Stress, Biochemical and Histopathological Changes in the Kidney of Mice

. 2023 Aug 31 ; 72 (4) : 455-463.

Jazyk angličtina Země Česko Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37795888

Accidents with venomous bees are a serious worldwide health concern. Since the kidney has been reported as the main venom-target organ, the present study was undertaken to investigate the in vivo nephrotoxic effect of Algerian bee venom (ABV) (Apis mellifera intermissa) collected in the middle east of Algeria. A preliminary study was performed on ABV to identify the ABV using SDS-PAGE analysis and to determine the in vivo intraperitoneal median lethal dose (LD50) using the Probit analysis test. In vivo nephrotoxic effect was assessed through the determination of physiological and kidney biochemical markers in mice intraperitoneally injected with ABV at doses of 0.76 (D1); 1.14 (D2) and 2.29 mg/kg body weight (bwt) (D3), corresponding respectively to LD50/15, LD50/10, and LD50/5 (i.p. LD50=11.48 mg/kg bwt) for seven consecutive days. Results revealed a marked decrease in body weight gain and food intake, and an increase in absolute and relative kidney weights in ABV D2 and D3 treated mice compared with controls. Furthermore, ABV D2 and D3 resulted in a significant increase in serum creatinine, urea, and uric acid. ABV-induced oxidative stress was evidenced by a significant increase in kidney MDA level, and a significant depletion in kidney GSH level, and catalase activity. Meanwhile, no marked changes in the above-mentioned parameters were noticed in ABV D1. Accordingly, the adverse nephrotoxic effect of ABV was proved by the dose-dependent kidney histological changes. In summary, the results of the present study evidence that ABV at doses of 1.14 (D2) and 2.28 mg/kg body weight (bwt) can cause marked changes in kidney biochemical and major antioxidant markers, and histological architecture.

Zobrazit více v PubMed

Loucif-Ayad W, Achou M, Legout H, Alburaki M, Garnery L. Genetic assessment of Algerian honeybee populations by microsatellite markers. Apidologie. 2015;46:392–402. doi: 10.1007/s13592-014-0331-0. DOI

Franck P, Garnery L, Solignac M, Cornuet JM. The origin of west European subspecies of honeybees (Apis mellifera): new insights from microsatellite and mitochondrial data. Evolution. 1998;52:1119–1134. doi: 10.1111/j.1558-5646.1998.tb01839.x. PubMed DOI

Abd El-Wahed AA, Khalifa SA, Sheikh BY, Farag MA, Saeed A, Larik FA, Koca-Caliskan U, et al. Bee venom composition: From chemistry to biological activity. Studies Nat Products Chem. 2019;60:459–484. doi: 10.1016/B978-0-444-64181-6.00013-9. DOI

Zhang S, Liu Y, Ye Y, Wang X-R, Lin L-T, Xiao L-Y, Zhou P, Shi G-X, Liu C-Z. Bee venom therapy: Potential mechanisms and therapeutic applications. Toxicon. 2018;148:64–73. doi: 10.1016/j.toxicon.2018.04.012. PubMed DOI

Khalil A, Elesawy BH, Ali TM, Ahmed OM. Bee venom: From venom to drug. Molecules. 2021;26:4941. doi: 10.3390/molecules26164941. PubMed DOI PMC

Grisotto LS, Mendes GE, Castro I, Baptista MA, Alves VA, Yu L, Burdmann EA. Mechanisms of bee venom-induced acute renal failure. Toxicon. 2006;48:44–54. doi: 10.1016/j.toxicon.2006.04.016. PubMed DOI

Winston ML. The Africanized ‘killer’ bee: biology and public health. Q J Med. 1994;87:263–267. PubMed

Kolecki P. Delayed toxic reaction following massive bee envenomation. Ann Emerg Med. 1999;33:114–116. doi: 10.1016/S0196-0644(99)70428-2. PubMed DOI

Daher EDF, Silva GBd, Junior, Bezerra GP, Pontes LB, Martins AMC, Guimarães JA. Acute renal failure after massive honeybee stings. Rev Inst Med Trop Sao Paulo. 2003;45:45–50. doi: 10.1590/S0036-46652003000100010. PubMed DOI

Gabriel DP, Gonçalves Rodrigues A, Jr, Barsante RC, dos Santos Silva V, Teixeira Caramori J, Cuadrado Martim L, Barretti P, Balbi AL. Severe acute renal failure after massive attack of Africanized bees. Nephrol Dial Transplant. 2004;19:2680–268. doi: 10.1093/ndt/gfh440. PubMed DOI

Reis MAd, Costa RS, Coimbra TM, Teixeira VP. Acute renal failure in experimental envenomation with Africanized bee venom. Ren Fail. 1998;20:39–51. doi: 10.3109/08860229809045088. PubMed DOI

França F, Benvenuti L, Fan HW, Santos DD, Hain S, Picchi-Martins F, Cardoso J, Kamiguti A, Theakston R, Warrell D. Severe and fatal mass attacks by ‘killer’bees (Africanized honey bees-Apis mellifera scutellata) in Brazil: clinicopathological studies with measurement of serum venom concentrations. Q J Med. 1994;87:269–282. PubMed

Azevedo-Marques MM, Ferreira DB, Costa RS. Rhabdomyonecrosis experimentally induced in Wistar rats by Africanized bee venom. Toxicon. 1992;30:344–348. doi: 10.1016/0041-0101(92)90875-6. PubMed DOI

Humblet Y, Sonnet J, van Ypersele de Strihou C. Bee stings and acute tubular necrosis. Nephron. 1982;31:187–188. doi: 10.1159/000182643. PubMed DOI

Waziri B, Alhaji UI, Oduwale MA, Umar HI, Abdulmalik AM. A rare concurrence: bee venom associated acute tubular necrosis and acute interstitial nephritis. Oxf Med Case Reports. 2022;2022:omac026. doi: 10.1093/omcr/omac026. PubMed DOI PMC

Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–685. doi: 10.1038/227680a0. PubMed DOI

Randhawa MA. Calculation of LD50 values from the method of Miller and Tainter, 1944. J Ayub Med Coll Abbottabad. 2009;21:184–185. PubMed

Tietze F. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem. 1969;27:502–522. doi: 10.1016/0003-2697(69)90064-5. PubMed DOI

Uchiyama M, Mihara M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem. 1978;86:271–278. doi: 10.1016/0003-2697(78)90342-1. PubMed DOI

Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121–126. doi: 10.1016/S0076-6879(84)05016-3. PubMed DOI

Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI

Sloviter RS. A simplified Timm stain procedure compatible with formaldehyde fixation and routine paraffin embedding of rat brain. Brain Res Bull. 1982;8:771–774. doi: 10.1016/0361-9230(82)90104-6. PubMed DOI

Burzyńska M, Piasecka-Kwiatkowska D. A review of honeybee venom allergens and allergenicity. Int J Mol Sci. 2021;22:8371. doi: 10.3390/ijms22168371. PubMed DOI PMC

Shipolini RA, Callewaert GL, Cottrell RC, Vernon CA. The amino-acid sequence and carbohydrate content of phospholipase A2 from bee venom. Eur J Biochem. 1974;48:465–476. doi: 10.1111/j.1432-1033.1974.tb03787.x. PubMed DOI

Damodaran S, Parkin KL, editors. Fennema’s Food Chemistry. 5th ed. CRC Press; 2017. Amino acids, peptides and proteins. DOI

Natzir R, Teranishi H, Kitagawa M, Kasuya M. A novel venom protein of the Asian bee (Apis cerana indica) with an affinity to human α1-microglobulin. Allergol Internat. 1999;48:121–128. doi: 10.1046/j.1440-1592.1999.00123.x. DOI

Lima PD, Brochetto-Braga M, Chaud-Netto J. Proteolytic activity of Africanized honeybee (Apis mellifera: hymenoptera, apidae) venom. J Venom Anim Toxins. 2000;6:64–76. doi: 10.1590/S0104-79302000000100004. DOI

Danneels EL, Van Vaerenbergh M, Debyser G, Devreese B, De Graaf DC. Honeybee venom proteome profile of queens and winter bees as determined by a mass spectrometric approach. Toxins (Basel) 2015;7:4468–4483. doi: 10.3390/toxins7114468. PubMed DOI PMC

Uzuner SÇ, Birinci E, Tetikoğlu S, Birinci C, Kolaylı S. Distinct epigenetic reprogramming, mitochondrial patterns, cellular morphology, and cytotoxicity after bee venom treatment. Recent Pat Anticancer Drug Discov. 2021;16:377–392. doi: 10.2174/1574892816666210422125058. PubMed DOI

Darwish DA, Masoud HM, Abdel-Monsef MM, Helmy MS, Zidan HA, Ibrahim MA. Phospholipase A2 enzyme from the venom of Egyptian honey bee Apis mellifera lamarckii with anti-platelet aggregation and anti-coagulation activities. J Genet Eng Biotechnol. 2021;19:10. doi: 10.1186/s43141-020-00112-z. PubMed DOI PMC

Lashein FE-DM, Amra E-SA, Seleem AA, Badr AH. Ameliorative effect of bee venom and its extracted bradykinin-potentiating factor on neurological alteration induced by acrylamide and chips administration. J Basic Appl Zool. 2018;79:35. doi: 10.1186/s41936-018-0048-0. DOI

de Roodt AR, Lanari LC, Lago NR, Bustillo S, Litwin S, Morón-Goñi F, Gould EG, et al. Toxicological study of bee venom (Apis mellifera mellifera) from different regions of the province of Buenos Aires, Argentina. Toxicon. 2020;188:27–38. doi: 10.1016/j.toxicon.2020.09.014. PubMed DOI

Yu C, Yu H, Li P. Highlights of animal venom research on the geographical variations of toxin components, toxicities and envenomation therapy. Int J Biol Macromol. 2020;165:2994–3006. doi: 10.1016/j.ijbiomac.2020.10.190. PubMed DOI

Junior RSF, Sciani JM, Marques-Porto R, Junior AL, Orsi RdO, Barraviera B, Pimenta DC. Africanized honey bee (Apis mellifera) venom profiling: Seasonal variation of melittin and phospholipase A2 levels. Toxicon. 2010;56:355–362. doi: 10.1016/j.toxicon.2010.03.023. PubMed DOI

Han SM, Lee GG, Park KK. Acute dermal toxicity study of bee venom (Apis mellifera L.) in rats. Toxicol Res. 2012;28:99–102. doi: 10.5487/TR.2012.28.2.099. PubMed DOI PMC

Cheon S-Y, Chung K-S, Roh S-S, Cha Y-Y, An H-J. Bee venom suppresses the differentiation of preadipocytes and high fat diet-induced obesity by inhibiting adipogenesis. Toxins (Basel) 2017;10:9. doi: 10.3390/toxins10010009. PubMed DOI PMC

Ribeiro PR, Bianchi MV, Henker LC, Gonzales F, Pavarini SP. Acute renal failure in a horse following bee sting toxicity. Cienc Rural. 2020;50:e20190940. doi: 10.1590/0103-8478cr20190940. DOI

Giacomini KM, Roberts SM, Levy G. Evaluation of methods for producing renal dysfunction in rats. J Pharm Sci. 1981;70:117–121. doi: 10.1002/jps.2600700202. PubMed DOI

Maiuolo J, Oppedisano F, Gratteri S, Muscoli C, Mollace V. Regulation of uric acid metabolism and excretion. Int J C. 2016;213:8–14. doi: 10.1016/j.ijcard.2015.08.109. PubMed DOI

Hassan AK, El-kotby DA, Tawfik MM, Badr RE, Bahgat IM. Antidiabetic effect of the Egyptian honey bee (Apis mellifera) venom in alloxan-induced diabetic rats. J Basic Appl Zool. 2019;80:1–9. doi: 10.1186/s41936-019-0127-x. DOI

Kurek-Górecka A, Komosinska-Vassev K, Rzepecka-Stojko A, Olczyk P. Bee venom in wound healing. Molecules. 2020;26:148. doi: 10.3390/molecules26010148. PubMed DOI PMC

Shakir AT, Mahdi RK, Al-Morshidy KA. A weak effects of bee venom on rat superoxide dismutase, catalase and Malondialdehyde activity: Rheumatoid arthritis model. EurAsian J BioSci. 14:2983–2987. 202.

Gajski G, Cimbora-Zovko T, Osmak M, Garaj-Vrhovac V. Bee venom and melittin are cytotoxic against different types of tumor and non-tumor cell lines in vitro. Cancer Res J. 2011;4:159–174.

Sobral F, Sampaio A, Falcão S, Queiroz MJR, Calhelha RC, Vilas-Boas M, Ferreira IC. Chemical characterization, antioxidant, anti-inflammatory and cytotoxic properties of bee venom collected in Northeast Portugal. Food Chem Toxicol. 2016;94:172–177. doi: 10.1016/j.fct.2016.06.008. PubMed DOI

El Adham EK, Hassan AIA, Dawoud M. Evaluating the role of propolis and bee venom on the oxidative stress induced by gamma rays in rats. Sci Rep. 2022;12:2656. doi: 10.1038/s41598-022-05979-1. PubMed DOI PMC

Yousefpoor Y, Osanloo M, Mirzaei-Parsa MJ, Najafabadi MRH, Hashemi SM, Abbasifard M. Subcutaneous injection of bee venom in Wistar rats: effects on blood cells and biochemical parameters. J Pharmacopuncture. 2022;25:250–257. doi: 10.3831/KPI.2022.25.3.250. PubMed DOI PMC

Yu F, Cui L, Gao Z, Lu X, Hu F, Yuan H. A rat model of acute kidney injury caused by multiple subcutaneous injections of Asian giant hornet (Vespa mandarina Smith) venom. Toxicon. 2022;213:23–26. doi: 10.1016/j.toxicon.2022.04.008. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...