Multivariate Independent Component Analysis Identifies Patients in Newborn Screening Equally to Adjusted Reference Ranges
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
P 31881
Austrian Science Fund FWF - Austria
PubMed
37873851
PubMed Central
PMC10594528
DOI
10.3390/ijns9040060
PII: ijns9040060
Knihovny.cz E-zdroje
- Klíčová slova
- compositional data analysis, inborn errors of metabolism, independent component analysis, mass spectrometry, multivariate statistical analysis, newborn screening,
- Publikační typ
- časopisecké články MeSH
Newborn screening (NBS) of inborn errors of metabolism (IEMs) is based on the reference ranges established on a healthy newborn population using quantile statistics of molar concentrations of biomarkers and their ratios. The aim of this paper is to investigate whether multivariate independent component analysis (ICA) is a useful tool for the analysis of NBS data, and also to address the structure of the calculated ICA scores. NBS data were obtained from a routine NBS program performed between 2013 and 2022. ICA was tested on 10,213/150 free-diseased controls and 77/20 patients (9/3 different IEMs) in the discovery/validation phases, respectively. The same model computed during the discovery phase was used in the validation phase to confirm its validity. The plots of ICA scores were constructed, and the results were evaluated based on 5sd levels. Patient samples from 7/3 different diseases were clearly identified as 5sd-outlying from control groups in both phases of the study. Two IEMs containing only one patient each were separated at the 3sd level in the discovery phase. Moreover, in one latent variable, the effect of neonatal birth weight was evident. The results strongly suggest that ICA, together with an interpretation derived from values of the "average member of the score structure", is generally applicable and has the potential to be included in the decision process in the NBS program.
Department of Clinical Biochemistry University Hospital Olomouc 779 00 Olomouc Czech Republic
Department of Mathematics and Statistics University of Jyväskylä 40014 Jyväskylä Finland
Faculty of Health Care The Slovak Medical University in Bratislava 974 05 Banská Bystrica Slovakia
Zobrazit více v PubMed
Chace D.H., Kalas T.A., Naylor E.W. Use of tandem mass spectrometry for multianalyte screening of dried blood specimens from newborns. Clin. Chem. 2003;49:1797–1817. doi: 10.1373/clinchem.2003.022178. PubMed DOI
Maccready R.A., Hussey M.G. Newborn phenylketonuria detection program in Massachusetts. Am. J. Public Health Nations Health. 1964;54:2075–2081. doi: 10.2105/AJPH.54.12.2075. PubMed DOI PMC
McHugh D.M.S., Cameron C.A., Abdenur J.E., Abdulrahman M., Adair O., Al Nuaimi S.A., Åhlman H., Allen J.J., Antonozzi I., Archer S., et al. Clinical validation of cutoff target ranges in newborn screening of metabolic disorders by tandem mass spectrometry: A worldwide collaborative project. Genet. Med. 2011;13:230–254. doi: 10.1097/GIM.0b013e31820d5e67. PubMed DOI
Hsia D.Y.Y. Phenylketonuria: The phenylalanine-tyrosine ratio in the detection of the heterozygous carrier. J. Ment. Defic. Res. 1958;2:8–16. doi: 10.1111/j.1365-2788.1958.tb00380.x. PubMed DOI
Wilson J.M.G., Jungner G. Principles and Practice of Screening for Disease. World Health Organization; Geneva, Switzerland: 1968.
Chace D.H., Millington D.S., Terada N., Kahler S.G., Roe C.R., Hofman L.F. Rapid diagnosis of phenylketonuria by quantitative analysis for phenylalanine and tyrosine in neonatal blood spots by tandem mass spectrometry. Clin. Chem. 1993;39:66–71. doi: 10.1093/clinchem/39.1.66. PubMed DOI
Eastman J., Sherwin J., Wong R., Liao C., Currier R., Lorey F., Cunningham G. Use of the phenylalanine:tyrosine ratio to test newborns for phenylketonuria in a large public health screening programme. J. Med. Screen. 2000;7:131–135. doi: 10.1136/jms.7.3.131. PubMed DOI
Jager E.A., Kuijpers M.M., Bosch A.M., Mulder M.F., Gozalbo E.R., Visser G., de Vries M., Williams M., Waterham H.R., van Spronsen F.J., et al. A nationwide retrospective observational study of population newborn screening for medium-chain acyl-CoA dehydrogenase (MCAD) deficiency in the Netherlands. J. Inherit. Metab. Dis. 2019;42:890–897. doi: 10.1002/jimd.12102. PubMed DOI
Tajima G., Hara K., Tsumura M., Kagawa R., Okada S., Sakura N., Maruyama S., Noguchi A., Awaya T., Ishige M., et al. Newborn screening for carnitine palmitoyltransferase II deficiency using (C16+C18:1)/C2: Evaluation of additional indices for adequate sensitivity and lower false-positivity. Mol. Genet. Metab. 2017;122:67–75. doi: 10.1016/j.ymgme.2017.07.011. PubMed DOI
De Sain-van der Velden M.G.M., Rinaldo P., Elvers B., Henderson M., Walter J.H., Prinsen B.H.C.M.T., Verhoeven-Duif N.M., de Koning T.J., van Hasselt P. The Proline/Citrulline Ratio as a Biomarker for OAT Deficiency in Early Infancy. JIMD Rep. 2012;6:95–99. doi: 10.1007/8904_2011_122. PubMed DOI PMC
Bedoyan J.K., Hage R., Shin H.K., Linard S., Ferren E., Ducich N., Wilson K., Lehman A., Schillaci L., Manickam K., et al. Utility of specific amino acid ratios in screening for pyruvate dehydrogenase complex deficiencies and other mitochondrial disorders associated with congenital lactic acidosis and newborn screening prospects. JIMD Rep. 2020;56:70–81. doi: 10.1002/jmd2.12153. PubMed DOI PMC
Archimbaud A., Nordhausen K., Ruiz-Gazen A. ICS for multivariate outlier detection with application to quality control. Comput. Stat. Data Anal. 2018;128:184–199. doi: 10.1016/j.csda.2018.06.011. DOI
R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2023. [(accessed on 8 March 2022)]. Available online: https://www.R-project.org/
Miettinen J., Nordhausen K., Taskinen S. fICA: FastICA Algorithms and Their Improved Variants. R J. 2018;10:148–158. doi: 10.32614/RJ-2018-046. DOI
Templ M., Hron K., Filzmoser P. Compositional Data Analysis: Theory and Applications. John Wiley & Sons; Hoboken, NJ, USA: 2011. robCompositions: An R-package for robust statistical analysis of compositional data; pp. 341–355. DOI
Nordhausen K., Oja H. Independent component analysis: A statistical perspective. WIREs Comput. Stat. 2018;10:e1440. doi: 10.1002/wics.1440. DOI
Muehlmann C., Fačevicová K., Gardlo A., Janečková H., Nordhausen K. Independent component analysis for compositional data. In: Daouia A., Ruiz-Gazen A., editors. Advances in Contemporary Statistics and Econometrics. Springer International Publishing; Berlin/Heidelberg, Germany: 2021. pp. 525–545. DOI
Miettinen J., Nordhausen K., Oja H., Taskinen S. Deflation-based FastICA with adaptive choices of nonlinearities. IEEE Trans. Signal Process. 2014;62:5716–5724. doi: 10.1109/TSP.2014.2356442. DOI
Pawlowsky-Glahn V., Buccianti A., editors. . Compositional Data Analysis: Theory and Applications. John Wiley & Sons; Hoboken, NJ, USA: 2011. DOI
Fišerová E., Hron K. On the interpretation of orthonormal coordinates for compositional data. Math. Geosci. 2011;43:455–468. doi: 10.1007/s11004-011-9333-x. DOI
Leys C., Ley C., Klein O., Bernard P., Licata L. Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median. J. Exp. Soc. Psychol. 2013;49:764–766. doi: 10.1016/j.jesp.2013.03.013. DOI
Dodge Y. The Concise Encyclopedia of Statistics. Springer; New York, NY, USA: 2008. Median Absolute Deviation. DOI
Stroek K., Boelen A., Bouva M.J., De Sain-van der Velden M., Schielen P.C.J.I., Maase R., Engel H., Jakobs B., Kluijtmans L.A.J., Mulder M.F., et al. Evaluation of 11 years of newborn screening for maple syrup urine disease in the Netherlands and a systematic review of the literature: Strategies for optimization. JIMD Rep. 2020;54:68–78. doi: 10.1002/jmd2.12124. PubMed DOI PMC
CLIR Login Page. [(accessed on 29 October 2022)]. Available online: https://clir.mayo.edu/
Aitchison J. Principal component analysis of compositional data. Biometrika. 1983;70:57–65. doi: 10.1093/biomet/70.1.57. DOI
Radojičić U., Nordhausen K., Virta J. Large-sample properties of unsupervised estimation of the linear discriminant using projection pursuit. Electron. J. Stat. 2021;15:6677–6739. doi: 10.1214/21-EJS1956. DOI
David J., Chrastina P., Pešková K., Kožich V., Friedecký D., Adam T., Hlídková E., Vinohradská H., Novotná D., Hedelová M., et al. Epidemiology of rare diseases detected by newborn screening in the Czech Republic. Cent. Eur. J. Public Health. 2019;27:153–159. doi: 10.21101/cejph.a5441. PubMed DOI
Zaunseder E., Haupt S., Mütze U., Garbade S.F., Kölker S., Heuveline V. Opportunities and challenges in machine learning-based newborn screening—A systematic literature review. JIMD Rep. 2022;63:250–261. doi: 10.1002/jmd2.12285. PubMed DOI PMC