Multivariate Independent Component Analysis Identifies Patients in Newborn Screening Equally to Adjusted Reference Ranges

. 2023 Oct 20 ; 9 (4) : . [epub] 20231020

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37873851

Grantová podpora
P 31881 Austrian Science Fund FWF - Austria

Newborn screening (NBS) of inborn errors of metabolism (IEMs) is based on the reference ranges established on a healthy newborn population using quantile statistics of molar concentrations of biomarkers and their ratios. The aim of this paper is to investigate whether multivariate independent component analysis (ICA) is a useful tool for the analysis of NBS data, and also to address the structure of the calculated ICA scores. NBS data were obtained from a routine NBS program performed between 2013 and 2022. ICA was tested on 10,213/150 free-diseased controls and 77/20 patients (9/3 different IEMs) in the discovery/validation phases, respectively. The same model computed during the discovery phase was used in the validation phase to confirm its validity. The plots of ICA scores were constructed, and the results were evaluated based on 5sd levels. Patient samples from 7/3 different diseases were clearly identified as 5sd-outlying from control groups in both phases of the study. Two IEMs containing only one patient each were separated at the 3sd level in the discovery phase. Moreover, in one latent variable, the effect of neonatal birth weight was evident. The results strongly suggest that ICA, together with an interpretation derived from values of the "average member of the score structure", is generally applicable and has the potential to be included in the decision process in the NBS program.

Zobrazit více v PubMed

Chace D.H., Kalas T.A., Naylor E.W. Use of tandem mass spectrometry for multianalyte screening of dried blood specimens from newborns. Clin. Chem. 2003;49:1797–1817. doi: 10.1373/clinchem.2003.022178. PubMed DOI

Maccready R.A., Hussey M.G. Newborn phenylketonuria detection program in Massachusetts. Am. J. Public Health Nations Health. 1964;54:2075–2081. doi: 10.2105/AJPH.54.12.2075. PubMed DOI PMC

McHugh D.M.S., Cameron C.A., Abdenur J.E., Abdulrahman M., Adair O., Al Nuaimi S.A., Åhlman H., Allen J.J., Antonozzi I., Archer S., et al. Clinical validation of cutoff target ranges in newborn screening of metabolic disorders by tandem mass spectrometry: A worldwide collaborative project. Genet. Med. 2011;13:230–254. doi: 10.1097/GIM.0b013e31820d5e67. PubMed DOI

Hsia D.Y.Y. Phenylketonuria: The phenylalanine-tyrosine ratio in the detection of the heterozygous carrier. J. Ment. Defic. Res. 1958;2:8–16. doi: 10.1111/j.1365-2788.1958.tb00380.x. PubMed DOI

Wilson J.M.G., Jungner G. Principles and Practice of Screening for Disease. World Health Organization; Geneva, Switzerland: 1968.

Chace D.H., Millington D.S., Terada N., Kahler S.G., Roe C.R., Hofman L.F. Rapid diagnosis of phenylketonuria by quantitative analysis for phenylalanine and tyrosine in neonatal blood spots by tandem mass spectrometry. Clin. Chem. 1993;39:66–71. doi: 10.1093/clinchem/39.1.66. PubMed DOI

Eastman J., Sherwin J., Wong R., Liao C., Currier R., Lorey F., Cunningham G. Use of the phenylalanine:tyrosine ratio to test newborns for phenylketonuria in a large public health screening programme. J. Med. Screen. 2000;7:131–135. doi: 10.1136/jms.7.3.131. PubMed DOI

Jager E.A., Kuijpers M.M., Bosch A.M., Mulder M.F., Gozalbo E.R., Visser G., de Vries M., Williams M., Waterham H.R., van Spronsen F.J., et al. A nationwide retrospective observational study of population newborn screening for medium-chain acyl-CoA dehydrogenase (MCAD) deficiency in the Netherlands. J. Inherit. Metab. Dis. 2019;42:890–897. doi: 10.1002/jimd.12102. PubMed DOI

Tajima G., Hara K., Tsumura M., Kagawa R., Okada S., Sakura N., Maruyama S., Noguchi A., Awaya T., Ishige M., et al. Newborn screening for carnitine palmitoyltransferase II deficiency using (C16+C18:1)/C2: Evaluation of additional indices for adequate sensitivity and lower false-positivity. Mol. Genet. Metab. 2017;122:67–75. doi: 10.1016/j.ymgme.2017.07.011. PubMed DOI

De Sain-van der Velden M.G.M., Rinaldo P., Elvers B., Henderson M., Walter J.H., Prinsen B.H.C.M.T., Verhoeven-Duif N.M., de Koning T.J., van Hasselt P. The Proline/Citrulline Ratio as a Biomarker for OAT Deficiency in Early Infancy. JIMD Rep. 2012;6:95–99. doi: 10.1007/8904_2011_122. PubMed DOI PMC

Bedoyan J.K., Hage R., Shin H.K., Linard S., Ferren E., Ducich N., Wilson K., Lehman A., Schillaci L., Manickam K., et al. Utility of specific amino acid ratios in screening for pyruvate dehydrogenase complex deficiencies and other mitochondrial disorders associated with congenital lactic acidosis and newborn screening prospects. JIMD Rep. 2020;56:70–81. doi: 10.1002/jmd2.12153. PubMed DOI PMC

Archimbaud A., Nordhausen K., Ruiz-Gazen A. ICS for multivariate outlier detection with application to quality control. Comput. Stat. Data Anal. 2018;128:184–199. doi: 10.1016/j.csda.2018.06.011. DOI

R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2023. [(accessed on 8 March 2022)]. Available online: https://www.R-project.org/

Miettinen J., Nordhausen K., Taskinen S. fICA: FastICA Algorithms and Their Improved Variants. R J. 2018;10:148–158. doi: 10.32614/RJ-2018-046. DOI

Templ M., Hron K., Filzmoser P. Compositional Data Analysis: Theory and Applications. John Wiley & Sons; Hoboken, NJ, USA: 2011. robCompositions: An R-package for robust statistical analysis of compositional data; pp. 341–355. DOI

Nordhausen K., Oja H. Independent component analysis: A statistical perspective. WIREs Comput. Stat. 2018;10:e1440. doi: 10.1002/wics.1440. DOI

Muehlmann C., Fačevicová K., Gardlo A., Janečková H., Nordhausen K. Independent component analysis for compositional data. In: Daouia A., Ruiz-Gazen A., editors. Advances in Contemporary Statistics and Econometrics. Springer International Publishing; Berlin/Heidelberg, Germany: 2021. pp. 525–545. DOI

Miettinen J., Nordhausen K., Oja H., Taskinen S. Deflation-based FastICA with adaptive choices of nonlinearities. IEEE Trans. Signal Process. 2014;62:5716–5724. doi: 10.1109/TSP.2014.2356442. DOI

Pawlowsky-Glahn V., Buccianti A., editors. . Compositional Data Analysis: Theory and Applications. John Wiley & Sons; Hoboken, NJ, USA: 2011. DOI

Fišerová E., Hron K. On the interpretation of orthonormal coordinates for compositional data. Math. Geosci. 2011;43:455–468. doi: 10.1007/s11004-011-9333-x. DOI

Leys C., Ley C., Klein O., Bernard P., Licata L. Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median. J. Exp. Soc. Psychol. 2013;49:764–766. doi: 10.1016/j.jesp.2013.03.013. DOI

Dodge Y. The Concise Encyclopedia of Statistics. Springer; New York, NY, USA: 2008. Median Absolute Deviation. DOI

Stroek K., Boelen A., Bouva M.J., De Sain-van der Velden M., Schielen P.C.J.I., Maase R., Engel H., Jakobs B., Kluijtmans L.A.J., Mulder M.F., et al. Evaluation of 11 years of newborn screening for maple syrup urine disease in the Netherlands and a systematic review of the literature: Strategies for optimization. JIMD Rep. 2020;54:68–78. doi: 10.1002/jmd2.12124. PubMed DOI PMC

CLIR Login Page. [(accessed on 29 October 2022)]. Available online: https://clir.mayo.edu/

Aitchison J. Principal component analysis of compositional data. Biometrika. 1983;70:57–65. doi: 10.1093/biomet/70.1.57. DOI

Radojičić U., Nordhausen K., Virta J. Large-sample properties of unsupervised estimation of the linear discriminant using projection pursuit. Electron. J. Stat. 2021;15:6677–6739. doi: 10.1214/21-EJS1956. DOI

David J., Chrastina P., Pešková K., Kožich V., Friedecký D., Adam T., Hlídková E., Vinohradská H., Novotná D., Hedelová M., et al. Epidemiology of rare diseases detected by newborn screening in the Czech Republic. Cent. Eur. J. Public Health. 2019;27:153–159. doi: 10.21101/cejph.a5441. PubMed DOI

Zaunseder E., Haupt S., Mütze U., Garbade S.F., Kölker S., Heuveline V. Opportunities and challenges in machine learning-based newborn screening—A systematic literature review. JIMD Rep. 2022;63:250–261. doi: 10.1002/jmd2.12285. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...