Two Squares in a Barrel: An Axially Disubstituted Conformationally Rigid Aliphatic Binding Motif for Cucurbit[6]uril
Status PubMed-not-MEDLINE Language English Country United States Media print-electronic
Document type Journal Article
PubMed
37882436
PubMed Central
PMC10661032
DOI
10.1021/acs.joc.3c01556
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Novel binding motifs suitable for the construction of multitopic guest-based molecular devices (e.g., switches, sensors, data storage, and catalysts) are needed in supramolecular chemistry. No rigid, aliphatic binding motif that allows for axial disubstitution has been described for cucurbit[6]uril (CB6) so far. We prepared three model guests combining spiro[3.3]heptane and bicyclo[1.1.1]pentane centerpieces with imidazolium and ammonium termini. We described their binding properties toward CB6/7 and α-/β-CD using NMR, titration calorimetry, mass spectrometry, and single-crystal X-ray diffraction. We found that a bisimidazolio spiro[3.3]heptane guest forms inclusion complexes with CB6, CB7, and β-CD with respective association constants of 4.0 × 104, 1.2 × 1012, and 1.4 × 102. Due to less hindering terminal groups, the diammonio analogue forms more stable complexes with CB6 (K = 1.4 × 106) and CB7 (K = 3.8 × 1012). The bisimidazolio bicyclo[1.1.1]pentane guest forms a highly stable complex only with CB7 with a K value of 1.1 × 1011. The high selectivity of the new binding motifs implies promising potential in the construction of multitopic supramolecular components.
Department of Chemistry Faculty of Science Masaryk University Kotlářská 2 Brno 602 00 Czech Republic
See more in PubMed
Echavarren J.; Gall M. A. Y.; Haertsch A.; Leigh D. A.; Spence J. T. J.; Tetlow D. J.; Tian C. Sequence-Selective Decapeptide Synthesis by the Parallel Operation of Two Artificial Molecular Machines. J. Am. Chem. Soc. 2021, 143, 5158–5165. 10.1021/jacs.1c01234. PubMed DOI
Borsley S.; Leigh D. A.; Roberts B. M. W. A Doubly Kinetically-Gated Information Ratchet Autonomously Driven by Carbodiimide Hydration. J. Am. Chem. Soc. 2021, 143, 4414–4420. 10.1021/jacs.1c01172. PubMed DOI
Guo H.; Ye J.; Zhang Z.; Wang Y.; Yuan X.; Ou C.; Ding Y.; Yan C.; Wang J.; Yao Y. Pillar[5]arene-Based [2]Rotaxane: Synthesis, Characterization, and Application in a Coupling Reaction. Inorg. Chem. 2020, 59, 11915–11919. 10.1021/acs.inorgchem.0c01752. PubMed DOI
Ooya T.; Inoue D.; Choi H. S.; Kobayashi Y.; Loethen s.; Thompson D. H.; Ko Y. H.; Kim K.; Yui N. pH-Responsive Movement of Cucurbit[7]uril in a Diblock Polypseudorotaxane Containing Dimethyl α-Cyclodextrin and Cucurbit[7]uril. Org. Lett. 2006, 8, 3159–3162. 10.1021/ol060697e. PubMed DOI
Yuan L.; Wang R.; Macartney D. H. Binding Modes of Cucurbit[6]uril and Cucurbit[7]uril with a Tetracationic Bis(viologen) Guest. J. Org. Chem. 2007, 72, 4539–4542. 10.1021/jo070358e. PubMed DOI
Wyman I. W.; Macartney D. H. Host-Guest Complexes and Pseudorotaxanes of Cucurbit[7]uril with Acetylcholinesterase Inhibitors. J. Org. Chem. 2009, 74, 8031–8038. 10.1021/jo901861e. PubMed DOI
Sun H.-L.; Zhang H.-Y.; Dai Z.; Han X.; Liu Y. Insights into the Difference Between Rotaxane and Pseudorotaxane. Chem.—Asian J. 2017, 12, 265–270. 10.1002/asia.201601545. PubMed DOI
Lin R.-L.; Li R.; Shi H.; Zhang K.; Meng D.; Sun W.-Q.; Chen K.; Liu J.-X. Symmetrical-Tetramethyl-Cucurbit[6]uril-Driven Movement of Cucurbit[7]uril Gives Rise to Heterowheel [4]Pseudorotaxanes. J. Org. Chem. 2020, 85, 3568–3575. 10.1021/acs.joc.9b03283. PubMed DOI
Cuc T. T. K.; Nhien P. Q.; Khang T. M.; Chen H.-Y.; Wu C.-H.; Hue B. T. B.; Li Y.-K.; Wu J. I.; Lin H.-C. Controllable FRET processes towards ratiometric Fe3+ ion sensor of pseudo [3]rotaxane containing naphthalimide-based macrocyclic host donor and multi-stimuli responsive rhodamine-modified guest acceptor. Dyes Pigm. 2022, 197, 10990710.1016/j.dyepig.2021.109907. DOI
Tse Y. C.; Hein R.; Mitchell E. J.; Zhang Z.; Beer P. D. Halogen-Bonding Strapped Porphyrin BODIPY Rotaxanes for Dual Optical and Electrochemical Anion Sensing. Chem.—Eur. J. 2021, 27, 14550–14559. 10.1002/chem.202102493. PubMed DOI PMC
Sandoval-Torrientes R.; Carr T. R.; de Bo G. A Mechanochromic Hydrogen-Bonded Rotaxane. Macromol. Rapid Commun. 2020, 42, 2000447.10.1002/marc.202000447. PubMed DOI
Bej S.; Nandi M.; Ghosh P. A Cd(ii) and Zn(ii) selective naphthyl based [2]rotaxane acts as an exclusive Zn(ii) sensor upon further functionalization with pyrene. Dalton Trans. 2021, 51, 294–303. 10.1039/D0DT03645E. PubMed DOI
Li Q.; Wu Y.; Liu Y.; Shangguan L.; Shi b.; Zhu H. Rationally Designed Self-Immolative Rotaxane Sensor Based on Pillar[5]arene for Fluoride Sensing. Org. Lett. 2020, 16, 6663–6666. 10.1021/acs.orglett.0c02492. PubMed DOI
Li D. H.; Smith B. D. Shape-Selective Recognition of Quaternary Ammonium Chloride Ion Pairs. J. Org. Chem. 2019, 84, 2808–2816. 10.1021/acs.joc.8b03197. PubMed DOI
Blanco V.; Carlone A.; Hänni K. D.; Leigh D. A.; Lewandowski B. A Rotaxane-Based Switchable Organocatalyst. Angew. Chem., Int. Ed. 2012, 51, 5166–5169. 10.1002/anie.201201364. PubMed DOI
Calles M.; Puigcerver J.; Alonso D. A.; Alajarin M.; Martinez-Cuezva A.; Berna J. Enhancing the selectivity of prolinamide organocatalysts using the mechanical bond in [2]rotaxanes. Chem. Sci. 2020, 11, 3629–3635. 10.1039/D0SC00444H. PubMed DOI PMC
Dommaschk M.; Echavarren J.; Leigh D. A.; Marcos V.; Singleton T. A. Dynamic Control of Chiral Space Through Local Symmetry Breaking in a Rotaxane Organocatalyst. Angew. Chem., Int. Ed. 2019, 58, 14955–14958. 10.1002/anie.201908330. PubMed DOI
Gaedke M.; Witte F.; Anhäuser J.; Hupatz H.; Schröder H. V.; Valkonen A.; Rissanen K.; Lützen A.; Paulus B.; Schalley C. A. Chiroptical inversion of a planar chiral redoxswitchable rotaxane. Chem. Sci. 2019, 10, 10003–10009. 10.1039/C9SC03694F. PubMed DOI PMC
Yan Z.; Huang Q.; Liang W.; Yu X.; Zhou D.; Wu W.; Chruma J. J.; Yang C. Enantiodifferentiation in the Photoisomerization of (Z,Z)-1,3-Cyclooctadiene in the Cavity of γ-Cyclodextrin–Curcubit[6]uril-Wheeled [4]Rotaxanes with an Encapsulated Photosensitizer. Org. Lett. 2017, 19, 898–901. 10.1021/acs.orglett.7b00057. PubMed DOI
Cao L.; Šekutor M.; Zavalij P. Y.; Mlinarić-Majerski K.; Glaser R.; Isaacs L. Cucurbit[7]uril Guest Pair with an Attomolar Dissociation Constant. Angew. Chem., Int. Ed. 2014, 53, 988–993. 10.1002/anie.201309635. PubMed DOI
Moghaddam S.; Yang C.; Rekharsky M.; Ko Y. H.; Kim K.; Inoue Y.; Gilson M. K. New Ultrahigh Affinity Host–Guest Complexes of Cucurbit[7]uril with Bicyclo[2.2.2]octane and Adamantane Guests: Thermodynamic Analysis and Evaluation of M2 Affinity Calculations. J. Am. Chem. Soc. 2011, 133, 3570–3581. 10.1021/ja109904u. PubMed DOI PMC
Liu S. M.; Ruspic C.; Mukhopadhyay P.; Chakrabarti S.; Zavalij P. Y.; Isaacs L. The Cucurbit[n]uril Family: Prime Components for Self-Sorting Systems. J. Am. Chem. Soc. 2005, 127, 15959–15967. 10.1021/ja055013x. PubMed DOI
Babjaková E.; Branná P.; Kuczyńska M.; Rouchal M.; Prucková Z.; Dastychová L.; Vícha J.; Vícha R. An Adamantane-Based Disubstituted Binding Motif with Picomolar Dissociation Constants for Cucurbit[n]urils in Water and Related Ternary Aggregates. RSC Adv. 2016, 6, 105146–105153. 10.1039/C6RA23524G. DOI
Jelínková K.; Kovačević J.; Wrzecionková E.; Prucková Z.; Rouchal M.; Dastychová L.; Vícha R. Binding study on 1- adamantylalkyl(benz)imidazolium salts towards cyclodextrins and cucurbit[n]urils. New J. Chem. 2020, 44, 7071–7079. 10.1039/D0NJ00738B. DOI
Tomeček J.; Čablová A.; Hromádková A.; Novotný J.; Marek R.; Durník I.; Kulhánek P.; Prucková Z.; Rouchal M.; Dastychová L.; Vícha R. Modes of micromolar host–guest binding of β-cyclodextrin complexes revealed by NMR spectroscopy in salt water. J. Org. Chem. 2021, 86, 4483–4496. 10.1021/acs.joc.0c02917. PubMed DOI
Jelínková K.; Surmová H.; Matelová A.; Prucková Z.; Rouchal M.; Dastychová L.; Nečas M.; Vícha R. Cubane Arives on the Cucurbituril Scene. Org. Lett. 2017, 19, 2698–2701. 10.1021/acs.orglett.7b01029. PubMed DOI
Šekutor M.; Molčanov K.; Cao L. P.; Isaacs L.; Glaser R.; Mlinarić-Majerski K. Design, synthesis, and X-ray structural analyses of diamantane diammonium salts: Guests for cucurbit[n]uril (CB[n]) hosts. Eur. J. Org. Chem. 2014, 2014, 2533–2542. 10.1002/ejoc.201301844. DOI
Rekharsky M. V.; Mori T.; Yang C.; Ko Y. H.; Selvapalam N.; Kim H.; Sobransingh D.; Kaifer A. E.; Liu S.; Isaacs L.; Chen W.; Moghaddam S.; Gilson M. K.; Kim K.; Inoue Y. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 20737–20742. 10.1073/pnas.0706407105. PubMed DOI PMC
Breslow R.; Dong S. D. Biomimetic Reactions Catalyzed by Cyclodextrins and Their Derivatives. Chem. Rev. 1998, 98, 1997–2012. 10.1021/cr970011j. PubMed DOI
Cherraben S.; Scelle J.; Hasenknopf B.; Vives G.; Sollogoub M. Precise Rate Control of Pseudorotaxane Dethreading by pH-Responsive Selectively Functionalized Cyclodextrins. Org. Lett. 2021, 23, 7938–7942. 10.1021/acs.orglett.1c02940. PubMed DOI
Liu J.; Wang B.; Przybylski C.; Bistri-Aslanoff O.; Ménand M.; Zhang Y.; Sollogoub M. Programmed Synthesis of Hepta-Differentiated β-Cyclodextrin: 1 out of 117655 Arrangements. Angew. Chem., Int. Ed. 2021, 60, 12090–12096. 10.1002/anie.202102182. PubMed DOI
Mock W. L.; Shih N. Y. Host-Guest Binding Capacity of Cucurbituril. J. Org. Chem. 1983, 48, 3618–3619. 10.1021/jo00168a069. DOI
Cao L.; Isaacs L. Absolute and relative binding affinity of cucurbit[7]uril towards a series of cationic guests. Supramol. Chem. 2014, 26, 251–258. 10.1080/10610278.2013.852674. DOI
Márquez C.; Hudgins R. R.; Nau W. M. Mechanism of Host–Guest Complexation by Cucurbituril. J. Am. Chem. Soc. 2004, 126, 5806–5816. 10.1021/ja0319846. PubMed DOI
Rice L. M.; Grogan C. H. Spiranes. II. Spiro[3.3]heptane Derivatives. J. Org. Chem. 1961, 26, 54–58. 10.1021/jo01060a011. DOI
Kaszynski P.; Michl J. A practical photochemical synthesis of bicyclo[1.1.1]pentane-1,3-dicarboxylic acid. J. Org. Chem. 1988, 53, 4593–4594. 10.1021/jo00254a038. DOI
Le T. P.; Rončević I.; Dračínský M.; Císařová I.; Šolínová V.; Kašička V.; Kaleta J. Polyhalogenated Bicyclo[1.1.1]pentane-1,3-dicarboxylic Acids. J. Org. Chem. 2021, 86, 10303–10319. 10.1021/acs.joc.1c01020. PubMed DOI
Kaleta J.; Rončević I.; Císařová I.; Dračínský M.; Šolínová V.; Kašička V.; Michl J. Bridge-Chlorinated Bicyclo[1.1.1]pentane-1,3-dicarboxylic Acids. J. Org. Chem. 2019, 84, 2448–2461. 10.1021/acs.joc.8b02780. PubMed DOI
Baughman T. W.; Sworen J. C.; Wagener K. B. The facile preparation of alkenyl metathesis synthons. Tetrahedron 2004, 60, 10943–10948. 10.1016/j.tet.2004.09.021. DOI
De Hoog A. J.; Hulshof L. A.; Lugtenburg J. Nuclear Magnetic Resonance Spectra of Some 2,6-Disubstituted Spiro[3.3]heptane Derivatives. Tetrahedron 1974, 30, 3915–3920. 10.1016/S0040-4020(01)97083-8. DOI
Tang H.-Z.; Miura H.; Kawakami Y. Enantiopure Spiro[3.3]heptane-2,6-dicarboxylic Acid. J. Stereochem. 2002, 7, 5–9. 10.1080/10242430210705. PubMed DOI
Krivdin L. B. Non-empirical calculations of NMR indirect carbon–carbon coupling constants. Part 7 – Spiroalkanes. Magn. Reson. Chem. 2004, 42, 500–511. 10.1002/mrc.1367. PubMed DOI
Lee S. J. C.; Lee J. W.; Lee H. H.; Seo J.; Noh D. H.; Ko Y. H.; Kim K.; Kim H. I. Host–Guest Chemistry from Solution to the Gas Phase: An Essential Role of Direct Interaction with Water for High-Affinity Binding of Cucurbit[n]urils. J. Phys. Chem. B 2013, 117, 8855–8864. 10.1021/jp4053874. PubMed DOI
Bailey D. M.; Hennig A.; Uzunova V. D.; Nau W. M. Supramolecular Tandem Enzyme Assays for Multiparameter Sensor Arrays and Enantiomeric Excess Determination of Amino Acids. Chem.—Eur. J. 2008, 14, 6069–6077. 10.1002/chem.200800463. PubMed DOI
Alnajjar M. A.; Nau W. M.; Hennig A. A Reference Scale of Cucurbit[7]uril Binding Affinities. Org. Biomol. Chem. 2021, 19, 8521–8529. 10.1039/D1OB01304A. PubMed DOI
Liu S.; Ruspic C.; Mukhopadhyay P.; Chakrabarti S.; Zavalij P.; Isaacs L. The Cucurbit[n]uril Family: Prime Components for Self-Sorting Systems. J. Am. Chem. Soc. 2005, 127, 15959–15967. 10.1021/ja055013x. PubMed DOI
Sinha M. K.; Reany O.; Parvari G.; Karmakar A.; Keinan E. Switchable Cucurbituril–Bipyridine Beacons. Chem.—Eur. J. 2010, 16, 9056–9067. 10.1002/chem.200903067. PubMed DOI
Mecozzi S.; Rebek J. Jr. The 55% Solution: A Formula for Molecular Recognition in the Liquid State. Chem.—Eur. J. 1998, 4, 1016–1022. 10.1002/(SICI)1521-3765(19980615)4:6<1016::AID-CHEM1016>3.0.CO;2-B. DOI
Zhao Y. H.; Abraham M. H.; Zissimos A. M. Fast Calculation of van der Waals Volume as a Sum of Atomic and Bond Contributions and Its Application to Drug Compounds. J. Org. Chem. 2003, 68, 7368–7373. 10.1021/jo034808o. PubMed DOI
Nau W. M.; Florea M.; Assaf K. I. Deep Inside Cucurbiturils: Physical Properties and Volumes of their Inner Cavity Determine the Hydrophobic Driving Force for Host–Guest Complexation. Isr. J. Chem. 2011, 51, 559–577. 10.1002/ijch.201100044. DOI
Huo F.-J.; Yin C.-X.; Yang P. The crystal structure, self-assembly, DNA-binding and cleavage studies of the [2]pseudorotaxane composed of cucurbit[6]uril. Bioorg. Med. Chem. Lett. 2007, 17, 932–936. 10.1016/j.bmcl.2006.11.054. PubMed DOI
Sinha M. K.; Reany O.; Yefet M.; Botoshansky M.; Keinan E. Bistable Cucurbituril Rotaxanes Without Stoppers. Chem.—Eur. J. 2012, 18, 5589–5605. 10.1002/chem.201103434. PubMed DOI
Used structures can be obtained free of charge from CCDC: 693668; 278434; 601456; 601457; 667815; 772384; 981125; 1042215; 2050259.
Spackman P. R.; Turner M. J.; McKinnon J. J.; Wolff S. K.; Grimwood D. J.; Jayatilaka D.; Spackman M. A. J. Appl. Cryst. 2021, 54, 1006–1011. 10.1107/S1600576721002910. PubMed DOI PMC
Eikeland E.; Spackman M. A.; Iversen B. B. Quantifying Host–Guest Interaction Energies in Clathrates of Dianin’s Compound. Cryst. Growth Des. 2016, 16, 6858–6866. 10.1021/acs.cgd.6b00986. DOI
Yang Q.; Sheng M.; Henkelis J. J.; Tu S.; Wiensch E.; Zhang H.; Zhang Y.; Tucker C.; Ejeh D. E. Explosion Hazards of Sodium Hydride in Dimethyl Sulfoxide, N,N-Dimethylformamide, and N,N-Dimethylacetamide. Org. Process Res. Dev. 2019, 23, 2210–2217. 10.1021/acs.oprd.9b00276. DOI
Jaiswal P.; Varma M. N. Catalytic Performance of Dicationic Ionic Liquids and ZnBr2 in the Reaction of Epichlorohydrin and Carbon Dioxide: Kinetic Study. Catal. Lett. 2017, 147, 2067–2076. 10.1007/s10562-017-2062-0. DOI