Comparative Analysis of Somatic Stem Cells With Emphasis on Osteochondral Tissue Regeneration

. 2023 Oct 27 ; 72 (S3) : S299-S307.

Jazyk angličtina Země Česko Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37888973

Congenital anomalies, diseases, and injuries may result in osteochondral damage. Recently, a big hope has been given to somatic stem cells (SSCs) which are characterized as undifferentiated cells with an ability of long-term self-renewing and plasticity. They are adherent with a fibroblast-like morphology in vitro and express various surface markers (e.g. CD29, CD73, CD90, and CD105), but they are negative for CD31, CD34, CD45, and HLA-DR. SSCs secrete various bioactive molecules, which are involved in processes of regeneration. The main goal of the present study was the characterization and comparison of biological properties of SSCs obtained from adipose tissue, dental pulp, and urine concerning osteochondral regeneration. SSCs were maintained in an appropriate growth medium up to the third passage and were analyzed by light and electron microscope. The immunophenotype was analyzed by flow cytometry. The kinetics of proliferation was measured by MTT assay. Human Cytokine/Chemokine Multiplex Assay was used, and SSCs secretory profile was measured by Luminex MAGPIX® Instrument. Pellet cultures and a chondrogenic medium were used to induce chondrogenic differentiation. Osteogenic differentiation was induced by the osteogenic medium. Chondrogenic and osteogenic differentiation was analyzed by real-time PCR. SSCs had similar fibroblast-like morphology. They have similar kinetics of proliferation. SSCs shared the expression CD29, CD44, CD73, CD90, and CD105. They lack expression of CD29 and CD34. SSCs secerned similar levels of IL10 and IL18 while differing in IFN-gamma, IL6, IL8, MCP-1, and RANTES production. SSCs possess a similar capacity for chondrogenic differentiation but slightly differ in osteogenic differentiation. In conclusion, it can be emphasized that SSCs from adipose tissue, dental pulp, and urine share the majority of cellular characteristics typical for SSCs and have great potential to be used in osteochondral tissue regeneration.

Zobrazit více v PubMed

Jacob G, Shimomura K, Nakamura N. Osteochondral injury, management and tissue engineering approaches. Front Cell Dev Biol. 2020;8:580868. doi: 10.3389/fcell.2020.580868. PubMed DOI PMC

Chimutengwende-Gordon M, Donaldson J, Bentley G. Current solutions for the treatment of chronic articular cartilage defects in the knee. EFORT Open Rev. 2020;5:156–163. doi: 10.1302/2058-5241.5.190031. PubMed DOI PMC

Smolinska V, Debreova M, Culenova M, Csobonyeiova M, Svec A, Danisovic L. Implication of Mesenchymal Stem Cells and Their Derivates for Osteochondral Regeneration. Int J Mol Sci. 2022;23:2490. doi: 10.3390/ijms23052490. PubMed DOI PMC

Li W, Huang X, Yu W, Xu Y, Huang R, Park J, Moshaverinia A, Arora P, Chen C. Activation of functional somatic stem cells promotes endogenous tissue regeneration. J Dent Res. 2022;101:802–811. doi: 10.1177/00220345211070222. PubMed DOI PMC

Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop DJ, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–317. doi: 10.1080/14653240600855905. PubMed DOI

Mastrolia I, Foppiani EM, Murgia A, Candini O, Samarelli AV, Grisendi G, Veronesi E, Horwitz EM, Dominici M. Challenges in Clinical Development of Mesenchymal Stromal/Stem Cells: Concise Review. Stem Cells Transl Med. 2019;8:1135–1148. doi: 10.1002/sctm.19-0044. PubMed DOI PMC

Teixeira FG, Salgado AJ. Mesenchymal stem cells secretome: current trends and future challenges. Neural Regen Res. 2020;15:75–77. doi: 10.4103/1673-5374.264455. PubMed DOI PMC

Jiang S, Guo W, Tian G, Luo X, Peng L, Liu S, Sui X, Guo Q, Li X. Clinical Application Status of Articular Cartilage Regeneration Techniques: Tissue-Engineered Cartilage Brings New Hope. Stem Cells Int. 2020;2020:5690252. doi: 10.1155/2020/5690252. PubMed DOI PMC

Liu Y, Wu W, Seunggi C, Li Z, Huang Y, Zhou K, Wang B, Chen Z, Zhang Z. The application and progress of stem cells in auricular cartilage regeneration: a systematic review. Front Cell Dev Biol. 2023;11:1204050. doi: 10.3389/fcell.2023.1204050. PubMed DOI PMC

Chu DT, Phuong TNT, Tien NLB, Tran DK, Thanh VV, Quang TL, Truong DT, et al. An update on the progress of isolation, culture, storage, and clinical application of human bone marrow mesenchymal stem/stromal cells. Int J Mol Sci. 2020;21:708. doi: 10.3390/ijms21030708. PubMed DOI PMC

Wang Y, Wang F, Zhao H, Zhang X, Chen H, Zhang K. Human adipose-derived mesenchymal stem cells are resistant to HBV infection during differentiation into hepatocytes in vitro. Int J Mol Sci. 2014;15:6096–6110. doi: 10.3390/ijms15046096. PubMed DOI PMC

Dai Prè E, Busato A, Mannucci S, Vurro F, De Francesco F, Riccio V, Solito S, et al. In vitro characterization of adipose stem cells non-enzymatically extracted from the thigh and abdomen. Int J Mol Sci. 2020;21:3081. doi: 10.3390/ijms21093081. PubMed DOI PMC

Zidan AA, Al-Hawwas M, Perkins GB, Mourad GM, Stapledon CJM, Bobrovskaya L, Zhou XF, Hurtado PR. Characterization of Urine Stem Cell-Derived Extracellular Vesicles Reveals B Cell Stimulating Cargo. Int J Mol Sci. 2021;22:459. doi: 10.3390/ijms22010459. PubMed DOI PMC

Shi Y, Liu G, Wu R, Mack DL, Sun XS, Maxwell J, Guan X, Atala A, Zhang Y. Differentiation capacity of human urine-derived stem cells to retain telomerase activity. Front Cell Dev Biol. 2022;10:890574. doi: 10.3389/fcell.2022.890574. PubMed DOI PMC

Lindemann D, Werle SB, Steffens D, Garcia-Godoy F, Pranke P, Casagrande L. Effects of cryopreservation on the characteristics of dental pulp stem cells of intact deciduous teeth. Arch Oral Biol. 2014;59:970–976. doi: 10.1016/j.archoralbio.2014.04.008. PubMed DOI

Li X, Wang M, Jing X, Guo W, Hao C, Zhang Y, Gao S, et al. Bone Marrow- and adipose tissue-derived mesenchymal stem cells: characterization, differentiation, and applications in cartilage tissue engineering. Crit Rev Eukaryot Gene Expr. 2018;28:285–310. doi: 10.1615/CritRevEukaryotGeneExpr.2018023572. PubMed DOI

Ishimura D, Yamamoto N, Tajima K, Ohno A, Yamamoto Y, Washimi O, Yamada H. Differentiation of adipose-derived stromal vascular fraction culture cells into chondrocytes using the method of cell sorting with a mesenchymal stem cell marker. Tohoku J Exp Med. 2008;216:149–156. doi: 10.1620/tjem.216.149. PubMed DOI

Jiang W, Xu J. Immune modulation by mesenchymal stem cells. Cell Prolif. 2020;53:e12712. doi: 10.1111/cpr.12712. PubMed DOI PMC

Mishra VK, Shih HH, Parveen F, Lenzen D, Ito E, Chan TF, Ke LY. Identifying the therapeutic significance of mesenchymal stem cells. Cells. 2020;9:1145. doi: 10.3390/cells9051145. PubMed DOI PMC

Zidan AA, Al-Hawwas M, Perkins GB, Mourad GM, Stapledon CJM, Bobrovskaya L, Zhou XF, Hurtado PR. Characterization of urine stem cell-derived extracellular vesicles reveals B cell stimulating cargo. Int J Mol Sci. 2021;22:459. doi: 10.3390/ijms22010459. PubMed DOI PMC

Hou Y, Ryu CH, Jun JA, Kim SM, Jeong CH, Jeun SS. IL-8 enhances the angiogenic potential of human bone marrow mesenchymal stem cells by increasing vascular endothelial growth factor. Cell Biol Int. 2014;38:1050–1059. doi: 10.1002/cbin.10294. PubMed DOI

Alimperti S, Lei P, Wen Y, Tian J, Campbell AM, Andreadis ST. Serum-free spheroid suspension culture maintains mesenchymal stem cell proliferation and differentiation potential. Biotechnol Prog. 2014;30:974–983. doi: 10.1002/btpr.1904. PubMed DOI PMC

Kang HS, Choi SH, Kim BS, Choi JY, Park GB, Kwon TG, Chun SY. Advanced Properties of Urine Derived Stem Cells Compared to Adipose Tissue Derived Stem Cells in Terms of Cell Proliferation, Immune Modulation and Multi Differentiation. J Korean Med Sci. 2015;30:1764–1776. doi: 10.3346/jkms.2015.30.12.1764. PubMed DOI PMC

Lau MN, Kunasekaran W, On YY, Tan LJ, Zaharin NA, Ghani HAS, Musa S, Razi MR, Mohan G. A comparison study of dental pulp stem cells derived from healthy and orthodontically intruded human permanent teeth for mesenchymal stem cell characterisation. PLoS One. 2022;17:e0279129. doi: 10.1371/journal.pone.0279129. PubMed DOI PMC

Martin-Iglesias S, Milian L, Sancho-Tello M, Salvador-Clavell R, Martín de Llano JJ, Carda C, Mata M. BMP-2 enhances osteogenic differentiation of human adipose-derived and dental pulp stem cells in 2D and 3D in vitro models. Stem Cells Int. 2022;2022:4910399. doi: 10.1155/2022/4910399. PubMed DOI PMC

Xing F, Yin HM, Zhe M, Xie JC, Duan X, Xu JZ, Xiang Z, Li ZM. Nanotopographical 3D-Printed Poly(ε-caprolactone) Scaffolds Enhance Proliferation and Osteogenic Differentiation of Urine-Derived Stem Cells for Bone Regeneration. Pharmaceutics. 2022;14:1437. doi: 10.3390/pharmaceutics14071437. PubMed DOI PMC

Park J, Jeong K, Kim M, Kim W, Park JH. Enhanced osteogenesis of human urine-derived stem cells by direct delivery of 30Kc19α-Lin28A protein. Front Bioeng Biotechnol. 2023;11:1215087. doi: 10.3389/fbioe.2023.1215087. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...