• This record comes from PubMed

Activated mesenchymal stem cells increase drug susceptibility of methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa

. 2024 Feb ; 69 (1) : 145-154. [epub] 20231104

Language English Country United States Media print-electronic

Document type Journal Article

Links

PubMed 37924430
DOI 10.1007/s12223-023-01099-z
PII: 10.1007/s12223-023-01099-z
Knihovny.cz E-resources

Methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa are major causes of hospital-acquired infections and sepsis. Due to increasing antibiotic resistance, new treatments are needed. Mesenchymal stem cells (MSCs) have antimicrobial effects, which can be enhanced by preconditioning with antibiotics. This study investigated using antibiotics to strengthen MSCs against MRSA and P. aeruginosa. MSCs were preconditioned with linezolid, vancomycin, meropenem, or cephalosporin. Optimal antibiotic concentrations were determined by assessing MSC survival. Antimicrobial effects were measured by minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and antimicrobial peptide (AMP) gene expression. Optimal antibiotic concentrations for preconditioning MSCs without reducing viability were 1 μg/mL for linezolid, meropenem, and cephalosporin and 2 μg/mL for vancomycin. In MIC assays, MSCs preconditioned with linezolid, vancomycin, meropenem, or cephalosporin inhibited MRSA or P. aeruginosa growth at lower concentrations than non-preconditioned MSCs (p ≤ 0.001). In MBC assays, preconditioned MSCs showed enhanced bacterial clearance compared to non-preconditioned MSCs, especially when linezolid and vancomycin were used against MRSA (p ≤ 0.05). Preconditioned MSCs showed increased expression of genes encoding the antimicrobial peptide genes hepcidin and LL-37 compared to non-preconditioned MSCs. The highest hepcidin expression was seen with linezolid and vancomycin preconditioning (p ≤ 0.001). The highest LL-37 expression was with linezolid preconditioning (p ≤ 0.001). MSCs' preconditioning with linezolid, vancomycin, meropenem, or cephalosporin at optimal concentrations enhances their antimicrobial effects against MRSA and P. aeruginosa without compromising viability. This suggests preconditioned MSCs could be an effective adjuvant treatment for antibiotic-resistant infections. The mechanism may involve upregulation of AMP genes.

See more in PubMed

Abramson MA, Sexton DJ (1999) Nosocomial methicillin-resistant and methicillin-susceptible Staphylococcus aureus primary bacteremia: at what costs? Infect Control Hosp Epidemiol 20:408–411 PubMed DOI

Agerberth B, Charo J, Werr J, Olsson B, Idali F, Lindbom L, Kiessling R, Jornvall H, Wigzell H, Gudmundsson GH (2000) The human antimicrobial and chemotactic peptides LL-37 and alpha-defensins are expressed by specific lymphocyte and monocyte populations. Blood 96:3086–3093 PubMed DOI

Ahangarzadeh RM, Behzadiannezhad Q, Najjar-Pirayeh S and Oulia P (2002) In vitro activity of imipenem and ceftazidime against mucoid and non-mucoid strains of Pseudomonas aeruginosa isolated from patients in Iran. Arch Iran Med 4

Alcayaga-Miranda F, Cuenca J, Martin A, Contreras L, Figueroa FE, Khoury M (2015) Combination therapy of menstrual derived mesenchymal stem cells and antibiotics ameliorates survival in sepsis. Stem Cell Res Ther 6:199. https://doi.org/10.1186/s13287-015-0192-0 PubMed DOI PMC

Barber M (1961) Methicillin-resistant staphylococci. J Clin Pathol 14:385–393. https://doi.org/10.1136/jcp.14.4.385 PubMed DOI PMC

Cafferkey MT, Hone R, Coleman D, Pomeroy H, McGrath B, Ruddy R, Keane CT (1985) Methicillin-resistant Staphylococcus aureus in Dublin 1971–84. Lancet 2:705–708. https://doi.org/10.1016/s0140-6736(85)92942-3 PubMed DOI

Control CfD and Prevention (1997) Update: Staphylococcus aureus with reduced susceptibility to vancomycin–United States, 1997. MMWR Morb Mortal Wkly Rep 46:813

Diekema D, Pfaller M, Schmitz F, Smayevsky J, Bell J, Jones R, Beach M and Group SP (2001) Survey of infections due to Staphylococcus species: frequency of occurrence and antimicrobial susceptibility of isolates collected in the United States, Canada, Latin America, Europe, and the Western Pacific region for the SENTRY Antimicrobial Surveillance Program, 1997–1999. Clin Infect Dis 32:S114–S132 DOI

Driscoll JA, Brody SL, Kollef MH (2007) The epidemiology, pathogenesis and treatment of Pseudomonas aeruginosa infections. Drugs 67:351–368. https://doi.org/10.2165/00003495-200767030-00003 PubMed DOI

Duckworth GJ (1993) Diagnosis and management of methicillin resistant Staphylococcus aureus infection. BMJ 307:1049–1052. https://doi.org/10.1136/bmj.307.6911.1049 PubMed DOI PMC

Finnan S, Morrissey JP, O’Gara F, Boyd EF (2004) Genome diversity of Pseudomonas aeruginosa isolates from cystic fibrosis patients and the hospital environment. J Clin Microbiol 42:5783–5792. https://doi.org/10.1128/JCM.42.12.5783-5792.2004 PubMed DOI PMC

Gelband H, Molly Miller P, Pant S, Gandra S, Levinson J, Barter D, White A, Laxminarayan R (2015) The state of the world’s antibiotics 2015. Wound Healing Southern Africa 8:30–34

Gofton TE, Young GB (2012) Sepsis-associated encephalopathy. Nat Rev Neurol 8:557–566. https://doi.org/10.1038/nrneurol.2012.183 PubMed DOI

Gudmundsson GH, Agerberth B, Odeberg J, Bergman T, Olsson B, Salcedo R (1996) The human gene FALL39 and processing of the cathelin precursor to the antibacterial peptide LL-37 in granulocytes. Eur J Biochem 238:325–332. https://doi.org/10.1111/j.1432-1033.1996.0325z.x PubMed DOI

Gupta N, Krasnodembskaya A, Kapetanaki M, Mouded M, Tan X, Serikov V, Matthay MA (2012) Mesenchymal stem cells enhance survival and bacterial clearance in murine Escherichia coli pneumonia. Thorax 67:533–539. https://doi.org/10.1136/thoraxjnl-2011-201176 PubMed DOI

Hancock RE, Siehnel R, Martin N (1990) Outer membrane proteins of Pseudomonas. Mol Microbiol 4:1069–1075. https://doi.org/10.1111/j.1365-2958.1990.tb00680.x PubMed DOI

Harman RM, Yang S, He MK, Van de Walle GR (2017) Antimicrobial peptides secreted by equine mesenchymal stromal cells inhibit the growth of bacteria commonly found in skin wounds. Stem Cell Res Ther 8:157 PubMed DOI PMC

Jarvis W, Gaynes R, Horan T, Alonso-Echanove J, Emori T, Fridkin S, Lawton R, Richards M, Wright G, Culver D (1998) National Nosocomial Infections Surveillance (NNIS) system report, data summary from October 1986 April 1998, issued June 1998. Am J Infect Control 26:522–533 DOI

Kahlenberg JM, Kaplan MJ (2013) Little peptide, big effects: the role of LL-37 in inflammation and autoimmune disease. J Immunol 191:4895–4901. https://doi.org/10.4049/jimmunol.1302005 PubMed DOI

Karnatovskaia LV, Festic E (2012) Sepsis: a review for the neurohospitalist. Neurohospitalist 2:144–153. https://doi.org/10.1177/1941874412453338 PubMed DOI PMC

Kouhkheil R, Fridoni M, Piryaei A, Taheri S, Chirani AS, Anarkooli IJ, Nejatbakhsh R, Shafikhani S, Schuger LA, Reddy VB, Ghoreishi SK, Jalalifirouzkouhi R, Chien S, Bayat M (2018) The effect of combined pulsed wave low-level laser therapy and mesenchymal stem cell-conditioned medium on the healing of an infected wound with methicillin-resistant Staphylococcal aureus in diabetic rats. J Cell Biochem 119:5788–5797. https://doi.org/10.1002/jcb.26759 PubMed DOI

Krasnodembskaya A, Song Y, Fang X, Gupta N, Serikov V, Lee JW, Matthay MA (2010) Antibacterial effect of human mesenchymal stem cells is mediated in part from secretion of the antimicrobial peptide LL-37. Stem Cells 28:2229–2238 PubMed DOI

Lauth X, Babon JJ, Stannard JA, Singh S, Nizet V, Carlberg JM, Ostland VE, Pennington MW, Norton RS, Westerman ME (2005) Bass hepcidin synthesis, solution structure, antimicrobial activities and synergism, and in vivo hepatic response to bacterial infections. J Biol Chem 280:9272–9282. https://doi.org/10.1074/jbc.M411154200 PubMed DOI

Li Z, Willke RJ, Pinto LA, Rittenhouse BE, Rybak MJ, Pleil AM, Crouch CW, Hafkin B, Glick HA (2001) Comparison of length of hospital stay for patients with known or suspected methicillin-resistant Staphylococcus species infections treated with linezolid or vancomycin: a randomized, multicenter trial. Pharmacotherapy 21:263–274. https://doi.org/10.1592/phco.21.3.263.34198 PubMed DOI

Maranan MC, Moreira B, Boyle-Vavra S, Daum RS (1997) Antimicrobial resistance in staphylococci. Epidemiology, molecular mechanisms, and clinical relevance. Infect Dis Clin North Am 11:813–849. https://doi.org/10.1016/s0891-5520(05)70392-5 PubMed DOI

Mezey É, Nemeth K (2015) Mesenchymal stem cells and infectious diseases: smarter than drugs. Immunol Lett 168:208–214 PubMed DOI

Minguell JJ, Erices A, Conget P (2001) Mesenchymal Stem Cells Exp Biol Med (maywood) 226:507–520. https://doi.org/10.1177/153537020122600603 PubMed DOI

Nahaei M, Bohloli Khiavi R, Asgarzadeh M, Hasani A, Sadeghi J, Akbari Dibavar M (2007) Antibiotic resistance and plasmid profiles of pseudomonas aeruginosa strains isolated from in-patients of sina hospital-tabriz. J Ardabil Univ Med Sci 7:90–98

Németh K, Leelahavanichkul A, Yuen PS, Mayer B, Parmelee A, Doi K, Robey PG, Leelahavanichkul K, Koller BH, Brown JM (2009) Bone marrow stromal cells attenuate sepsis via prostaglandin E 2–dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med 15:42 PubMed DOI

Nimmo GR, Coombs GW, Pearson JC, O’Brien FG, Christiansen KJ, Turnidge JD, Gosbell IB, Collignon P, McLaws ML (2006) Methicillin-resistant Staphylococcus aureus in the Australian community: an evolving epidemic. Med J Aust 184:384–388. https://doi.org/10.5694/j.1326-5377.2006.tb00287.x PubMed DOI

Qiao M, Ying GG, Singer AC, Zhu YG (2018) Review of antibiotic resistance in China and its environment. Environ Int 110:160–172. https://doi.org/10.1016/j.envint.2017.10.016 PubMed DOI

Rabani R, Volchuk A, Jerkic M, Ormesher L, Garces-Ramirez L, Canton J, Masterson C, Gagnon S, Tatham KC and Marshall J (2018) Mesenchymal stem cells enhance NOX2 dependent ROS production and bacterial killing in macrophages during sepsis. Eur Respir J 1702021

Rubin RJ, Harrington CA, Poon A, Dietrich K, Greene JA, Moiduddin A (1999) The economic impact of Staphylococcus aureus infection in New York City hospitals. Emerg Infect Dis 5:9–17. https://doi.org/10.3201/eid0501.990102 PubMed DOI PMC

Saeedi P, Halabian R, Fooladi AAI (2019) Mesenchymal stem cells preconditioned by staphylococcal enterotoxin B enhance survival and bacterial clearance in murine sepsis model. Cytotherapy 21:41–53. https://doi.org/10.1016/j.jcyt.2018.11.002 PubMed DOI

Tyndall A, Pistoia V (2009) Mesenchymal stem cells combat sepsis. Nat Med 15:18–20. https://doi.org/10.1038/nm0109-18 PubMed DOI

Uccelli A, Moretta L, Pistoia V (2008) Mesenchymal stem cells in health and disease. Nat Rev Immunol 8:726–736. https://doi.org/10.1038/nri2395 PubMed DOI

Umehara Y, Kamata Y, Tominaga M, Niyonsaba F, Sakaguchi A, Ogawa H, Takamori K (2017) Effects of antimicrobial peptide LL-37 on expression of natural moisturizing factor-generating proteases in epidermal keratinocytes. J Dermatol Sci 86:e74–e75 DOI

Wenzel RP, Nettleman MD, Jones RN, Pfaller MA (1991) Methicillin-resistant Staphylococcus aureus: implications for the 1990s and effective control measures. Am J Med 91:221S-227S. https://doi.org/10.1016/0002-9343(91)90372-5 PubMed DOI

Wong SS, Ho PL, Woo PC, Yuen KY (1999) Bacteremia caused by staphylococci with inducible vancomycin heteroresistance. Clin Infect Dis 29:760–767. https://doi.org/10.1086/520429 PubMed DOI

Wright GD (2010) Antibiotic resistance in the environment: a link to the clinic? Curr Opin Microbiol 13:589–594. https://doi.org/10.1016/j.mib.2010.08.005 PubMed DOI

Zhang L, Chan C (2010) Isolation and enrichment of rat mesenchymal stem cells (MSCs) and separation of single-colony derived MSCs. J vis Exp. https://doi.org/10.3791/1852 PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...