Motor-cognitive coupling is impaired in children with mild or severe forms of developmental coordination disorder
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
37941568
PubMed Central
PMC10628065
DOI
10.3389/fnhum.2023.1252852
Knihovny.cz E-resources
- Keywords
- children, developmental coordination disorder (DCD), goal-directed action, motor control, motor inhibition,
- Publication type
- Journal Article MeSH
Children with developmental coordination disorder (DCD) show deficits in motor-cognitive coupling. However, it remains unclear whether such deficits depend on the severity of DCD. The aim of this study was to examine cognitive-motor coupling under different levels of inhibitory control in children with severe (s-DCD) or moderate DCD (m-DCD), compared with typically-developing children (TDC). The performance of 29 primary-school children aged 6-12 years with s-DCD (Mage = 9.12 ± 1.56 years), 53 m-DCD (Mage = 8.78 ± 1.67 years), and 201 TDC (Mage = 9.20 ± 1.50 years) was compared on a double jump reaching task (DJRT) paradigm, presented on a large 42-inch touchscreen. The task display had a circular home-base, centred at the bottom of the display, and three target locations at radials of -20°, 0°, and 20°, 40 cm above the home-base circle. For the standard double-jump reaching task (DJRT), children moved their index finger from home-base circle to touch the target stimulus as fast as possible; 20% were jump trials where the target shifted left or right at lift-off. For the anti-jump reaching task (AJRT), 20% of trials required an anti-jump movement, touching the contralateral target location. While no group differences were shown on the DJRT, the DCD group were slower to complete reaching movements than the TDC group on AJRT; on the latter, the two DCD sub-groups were not shown to differ. Results confirm the presence of motor inhibition deficits in DCD which may not be dependent on the motor severity of the disorder.
See more in PubMed
3DVIA (2010). VIRTOOLS [computer software]. Vélizy-Villacoublay: Dassault Systèmes.
Amador-Ruiz S., Gutierrez D., Martínez-Vizcaíno V., Gulías-González R., Pardo-Guijarro M. J., Sánchez-López M. (2018). Motor competence levels and prevalence of developmental coordination disorder in Spanish children: the MOVI-KIDS study. J. Sch. Health 88, 538–546. doi: 10.1111/josh.12639 PubMed DOI
American Psychiatriac Association (2013). Diagnostic and Statistical Manual of Mental Disorders, Washington, DC: American Psychiatriac Association.
Banátová K., Valtr L., Abdollahipour R., Cuberek R., Wilson P. (2022). "Cross-Cultural Validation of the MABC-2 Checklist as a Screening Tool for Developmental Coordination Disorder." Presented at the 34th Annual Meeting of the European Academy of Childhood Disability, Barcelona.
Blank R., Barnett A. L., Cairney J., Green D., Kirby A., Polatajko H., et al. . (2019). International clinical practice recommendations on the definition, diagnosis, assessment, intervention, and psychosocial aspects of developmental coordination disorder. Dev. Med. Child Neurol. 61, 242–285. doi: 10.1111/dmcn.14132, PMID: PubMed DOI PMC
Borenstein M., Hedges L. V., Higgins J. P. T., Rothstein H. R. (2009). “Converting among effect sizes” in Introduction to Meta-Analysis (Chichester: John Wiley & Sons; ), 45–49.
Cohen J. (1988). Statistical Power Analysis for the Behavioral Sciences. New York: Academic Press.
Faul F., Erdfelder E., Lang A. G., Buchner A. (2007). G*power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 39, 175–191. doi: 10.3758/BF03193146, PMID: PubMed DOI
Friedman D., Nessler D., Cycowicz Y. M., Horton C. (2009). Development of and change in cognitive control: a comparison of children, young adults, and older adults. Cogn. Affect. Behav. Neurosci. 9, 91–102. doi: 10.3758/CABN.9.1.91, PMID: PubMed DOI PMC
Fritz C. O., Morris P. E., Richler J. J. (2012). Effect size estimates: current use, calculations, and interpretation. J. Exp. Psychol. Gen. 141, 2–18. doi: 10.1037/a0024338 PubMed DOI
Gallotta M. C., Zimatore G., Falcioni L., Migliaccio S., Lanza M., Schena F., et al. . (2022). Influence of geographical area and living setting on children's weight status, motor coordination, and physical activity. Front. Pediatr. 9:794284. doi: 10.3389/fped.2021.794284, PMID: PubMed DOI PMC
Henderson S.E., Sugden D.A., Barnett A.L. (2007). Movement Assessment Battery for Children-2. London: Harcourt Assessment.
Hyde C., Wilson P. H. (2011). Dissecting online control in developmental coordination disorder: a kinematic analysis of double-step reaching. Brain Cogn. 75, 232–241. doi: 10.1016/j.bandc.2010.12.004, PMID: PubMed DOI
Hyde C. E., Wilson P. H. (2013). Impaired online control in children with developmental coordination disorder reflects developmental immaturity. Dev. Neuropsychol. 38, 81–97. doi: 10.1080/87565641.2012.718820, PMID: PubMed DOI
Jelsma L. D., Geuze R. H., Smits-Engelsman B. C. M. (2020). Movement control strategies in a dynamic balance task in children with and without developmental coordination disorder. J. Motor Behav. 52, 175–186. doi: 10.1080/00222895.2019.1599809, PMID: PubMed DOI
Jelsma L. D., Smits-Engelsman B. C. M., Krijnen W. P., Geuze R. H. (2016). Changes in dynamic balance control over time in children with and without developmental coordination disorder. Hum. Mov. Sci. 49, 148–159. doi: 10.1016/j.humov.2016.07.003, PMID: PubMed DOI
Johansson H., Folkerts A. K., Hammarström I., Kalbe E., Leavy B. (2023). Effects of motor-cognitive training on dual-task performance in people with Parkinson’s disease: a systematic review and meta-analysis. J. Neurol. 270, 2890–2907. doi: 10.1007/s00415-023-11610-8 PubMed DOI PMC
Katschmarsky S., Cairney S., Maruff P., Wilson P. H., Currie J. (2001). The ability to execute saccades on the basis of efference copy: impairments in double-step saccade performance in children with developmental co-ordination disorder. Exp. Brain Res. 136, 73–78. doi: 10.1007/s002210000535 PubMed DOI
Kimbro R. T., Brooks-Gunn J., McLanahan S. (2011). Young children in urban areas: links among neighborhood characteristics, weight status, outdoor play, and television watching. Soc. Sci. Med. 72, 668–676. doi: 10.1016/j.socscimed.2010.12.015, PMID: PubMed DOI PMC
Kita Y., Suzuki K., Hirata S., Sakihara K., Inagaki M., Nakai A. (2016). Applicability of the movement assessment battery for children-second edition to Japanese children: a study of the age band 2. Brain and Development 38, 706–713. doi: 10.1016/j.braindev.2016.02.012, PMID: PubMed DOI
Krajenbrink H., Lust J. M., Steenbergen B. (2021). Eliciting end-state comfort planning in children with and without developmental coordination disorder using a hammer task: a pilot study. Front. Psychol. 12:625577. doi: 10.3389/fpsyg.2021.625577 PubMed DOI PMC
Krajenbrink H., Lust J. M., Wilmut K., Steenbergen B. (2023). Motor and cognitive dual-task performance under low and high task complexity in children with and without developmental coordination disorder. Res. Dev. Disabil. 135:104453. doi: 10.1016/j.ridd.2023.104453, PMID: PubMed DOI
Krajenbrink H., Lust J., Wilson P., Steenbergen B. (2020). Development of motor planning in children: disentangling elements of the planning process. J. Exp. Child Psychol. 199:104945. doi: 10.1016/j.jecp.2020.104945, PMID: PubMed DOI
Lenhard W., Lenhard A. (2016). Computation of Effect Sizes. Available at: https://www.psychometrica.de/effect_size.html (Accessed May 19, 2023).
Li Z., Wang T., Liu H., Jiang Y., Wang Z., Zhuang J. (2020). Dual-task training on gait, motor symptoms, and balance in patients with Parkinson’s disease: a systematic review and meta-analysis. Clin. Rehabil. 34, 1355–1367. doi: 10.1177/0269215520941142, PMID: PubMed DOI
Luna B. (2009). Developmental changes in cognitive control through adolescence. Adv. Child Dev. Behav. 37, 233–278. doi: 10.1016/S0065-2407(09)03706-9 PubMed DOI PMC
Mandich A., Buckolz E., Polatajko H. (2002). On the ability of children with developmental coordination disorder (DCD) to inhibit response initiation: the Simon effect. Brain Cogn. 50, 150–162. doi: 10.1016/S0278-2626(02)00020-9 PubMed DOI
McNamee D., Wolpert D. M. (2019). Internal models in biological control. Annu. Rev. Control Robot. 2, 339–364. doi: 10.1146/annurev-control-060117-105206, PMID: PubMed DOI PMC
McQuillan V. A., Swanwick R. A., Chambers M. E., Schlüter D. K., Sugden D. A. (2021). A comparison of characteristics, developmental disorders and motor progression between children with and without developmental coordination disorder. Hum. Mov. Sci. 78:102823. doi: 10.1016/j.humov.2021.102823, PMID: PubMed DOI
Michel E., Molitor S., Schneider W. (2018). Differential changes in the development of motor coordination and executive functions in children with motor coordination impairments. Child Neuropsychol. 24, 20–45. doi: 10.1080/09297049.2016.1223282, PMID: PubMed DOI
Pereira Oliva H. N., Mansur Machado F. S., Rodrigues V. D., Leão L. L., Monteiro-Júnior R. S. (2020). The effect of dual-task training on cognition of people with different clinical conditions: an overview of systematic reviews. IBRO Rep. 9, 24–31. doi: 10.1016/j.ibror.2020.06.005, PMID: PubMed DOI PMC
Psotta R. (2014). MABC-2. Test Motoriky Pro děti [Czech Version of the MABC-2 Test by Henderson et al., 2007]. Prague: Hogrefe Testcentrum.
Ramalho M. H. S., Valentini N. C., Muraro C. F., Gadens R., Nobre G. C. (2013). Validação Para língua Portuguesa: Lista de Checagem da movement assessment battery for children [validation for Portuguese language: movement assessment battery for children’ checklist]. Mot., Rev. Educ. Fis 19, 423–431. doi: 10.1590/s1980-65742013000200019 DOI
Ruddock S., Caeyenberghs K., Piek J., Sugden D., Hyde C., Morris S., et al. . (2016). Coupling of online control and inhibitory systems in children with atypical motor development: a growth curve modelling study. Brain Cogn. 109, 84–95. doi: 10.1016/j.bandc.2016.08.001, PMID: PubMed DOI
Ruddock S. R., Hyde C. E., Piek J. P., Sugden D., Morris S., Wilson P. H. (2014). Executive systems constrain the flexibility of online control in children during goal-directed reaching. Dev. Neuropsychol. 39, 51–68. doi: 10.1080/87565641.2013.855215 PubMed DOI
Ruddock S., Piek J., Sugden D., Morris S., Hyde C., Caeyenberghs K., et al. . (2015). Coupling online control and inhibitory systems in children with developmental coordination disorder: goal-directed reaching. Res. Dev. Disabil. 36, 244–255. doi: 10.1016/j.ridd.2014.10.013, PMID: PubMed DOI
Schoemaker M. M., Niemeijer A. S., Flapper B. C., Smits-Engelsman B. C. (2012). Validity and reliability of the movement assessment battery for Children-2 checklist for children with and without motor impairments. Dev. Med. Child Neurol. 54, 368–375. doi: 10.1111/j.1469-8749.2012.04226.x, PMID: PubMed DOI
Schulz J., Henderson S. E., Sugden D. A., Barnett A. L. (2011). Structural validity of the movement ABC-2 test: factor structure comparisons across three age groups. Res. Dev. Disabil. 32, 1361–1369. doi: 10.1016/j.ridd.2011.01.032, PMID: PubMed DOI
Sharp G., Denney J. T., Kimbro R. T. (2015). Multiple contexts of exposure: activity spaces, residential neighborhoods, and self-rated health. Soc. Sci. Med. 146, 204–213. doi: 10.1016/j.socscimed.2015.10.040, PMID: PubMed DOI
Subara-Zukic E., Cole M. H., McGuckian T. B., Steenbergen B., Green D., Smits-Engelsman B. C. M., et al. . (2022). Behavioral and neuroimaging research on developmental coordination disorder (DCD): a combined systematic review and meta-analysis of recent findings. Front. Psychol. 13:809455. doi: 10.3389/fpsyg.2022.809455, PMID: PubMed DOI PMC
Tukey J.W. (1977). Exploratory Data Analysis. Reading, PA: Addison-Wesley.
Vaivre-Douret L., Hamdioui S., Cannafarina A. (2020). The influence of IQ levels on clinical features of developmental coordination disorder. J. Psychiatry Psychiatr. Disord. 4, 218–234. doi: 10.26502/jppd.2572-519X0107 DOI
Williams J., Thomas P. R., Maruff P., Wilson P. H. (2008). The link between motor impairment level and motor imagery ability in children with developmental coordination disorder. Hum. Mov. Sci. 27, 270–285. doi: 10.1016/j.humov.2008.02.008, PMID: PubMed DOI
Wilmut K., Brown J. H., Wann J. P. (2007). Attention disengagement in children with developmental coordination disorder. Disabil. Rehabil. 29, 47–55. doi: 10.1080/09638280600947765, PMID: PubMed DOI
Wilson P. H., Maruff P., McKenzie B. E. (1997). Covert orienting of visuospatial attention in children with developmental coordination disorder. Dev. Med. Child Neurol. 39, 736–745. doi: 10.1111/j.1469-8749.1997.tb07375.x, PMID: PubMed DOI
Wilson P., Ruddock S., Rahimi-Golkhandan S., Piek J., Sugden D., Green D., et al. . (2020). Cognitive and motor function in developmental coordination disorder. Dev. Med. Child Neurol. 62, 1317–1323. doi: 10.1111/dmcn.14646 PubMed DOI
Wilson P. H., Ruddock S., Smits-Engelsman B., Polatajko H., Blank R. (2013). Understanding performance deficits in developmental coordination disorder: a meta-analysis of recent research. Dev. Med. Child Neurol. 55, 217–228. doi: 10.1111/j.1469-8749.2012.04436.x, PMID: PubMed DOI