• This record comes from PubMed

Plant Growth-Promoting Endophytic Bacteria Isolated from Miscanthus giganteus and Their Antifungal Activity

. 2023 Nov 05 ; 11 (11) : . [epub] 20231105

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
TN020000044 Technology Agency of the Czech Republic

Links

PubMed 38004722
PubMed Central PMC10672898
DOI 10.3390/microorganisms11112710
PII: microorganisms11112710
Knihovny.cz E-resources

Modern technologies can satisfy human needs only with the use of large quantities of fertilizers and pesticides that are harmful to the environment. For this reason, it is possible to develop new technologies for sustainable agriculture. The process could be carried out by using endophytic microorganisms with a (possible) positive effect on plant vitality. Bacterial endophytes have been reported as plant growth promoters in several kinds of plants under normal and stressful conditions. In this study, isolates of bacterial endophytes from the roots and leaves of Miscanthus giganteus plants were tested for the presence of plant growth-promoting properties and their ability to inhibit pathogens of fungal origin. Selected bacterial isolates were able to solubilize inorganic phosphorus, fix nitrogen, and produce phytohormones, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, and siderophore. Leaf bacterial isolate Pantoea ananat is 50 OL 2 had high production of siderophores (zone ≥ 5 mm), and limited phytohormone production, and was the only one to show ACC deaminase activity. The root bacterial isolate of Pseudomonas libanensis 5 OK 7A showed the best results in phytohormone production (N6-(Δ2-isopentenyl)adenine and indole-3-acetic acid, 11.7 and 12.6 ng·mL-1, respectively). Four fungal cultures-Fusarium sporotrichioides DBM 4330, Sclerotinia sclerotiorum SS-1, Botrytis cinerea DS 90 and Sphaerodes fimicola DS 93-were used to test the antifungal activity of selected bacterial isolates. These fungal cultures represent pathogenic families, especially for crops. All selected root endophyte isolates inhibited the pathogenic growth of all tested fungi with inhibition percentages ranging from 30 to 60%. Antifungal activity was also tested in two forms of immobilization of selected bacterial isolates: one in agar and the other on dextrin-coated cellulose carriers. These results demonstrated that the endophytic Pseudomonas sp. could be used as biofertilizers for crops.

See more in PubMed

Ouattara M.S., Laurent A., Berthou M., Borujerdi E., Butier A., Malvoisin P., Romelot D., Loyce C. Identifying Factors Explaining Yield Variability of Miscanthus x giganteus and Miscanthus sinensis Across Contrasting Environments: Use of an Agronomic Diagnosis Approach. Bioenergy Res. 2022;15:672–685. doi: 10.1007/s12155-021-10332-x. DOI

Hudson A.O., Ahmad N.H., Van Buren R., Savka M.A. Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology. Formatex Research Center; Badajoz, Spain: 2011. Sugarcane and Grapevine Endophytic Bacteria: Isolation, Detection of Quorum Sensing Signals and Identification by 16S v3 rDNA Sequence Analysis; pp. 801–806.

Li H., Sharma V.K., Newcombe G., BarbosaTrivella D.B., Soni R. Biotechnology application of bacterial endophytes in ariculture, environment and industry. Front. Microbiol. 2023;17:1269279 PubMed PMC

Malfanova N.V. Ph.D. Thesis. Leiden University; Leiden, The Netherlands: 2013. Endophytic Bacteria with Plant Growth Promoting and Biocontrol Abilities.

Reed M.L.E., Glick B.R. Applications of plant growth-promoting bacteria for plant and soil systems. In: Editor Gupta V.K., Schmoll M., Mazutti M.A., Maki M., Tuohy M.G., editors. Application of Microbial Engineering. CRC Press; Boca Raton, FL, USA: 2013. pp. 181–228.

Afzal M., Khan Q.M., Sessitsch A. Endophytic bacteria: Prospects and applications for the phytoremediation of organic pollutants. Chemosphere. 2014;117:232–242. doi: 10.1016/j.chemosphere.2014.06.078. PubMed DOI

Kushwaha P., Kashyap P.L., Srivastava A.K., Tiwari R.K. Plant growth promoting and antifungal activity in endophytic Bacillus strains from pearl millet (Pennisetum glaucum) Braz. J. Microbiol. 2020;51:229–241. doi: 10.1007/s42770-019-00172-5. PubMed DOI PMC

Gupta G., Panwar J., Akhtar M.S., Jha P.N. Endophytic nitrogen-fixing bacteria as biofertilizer. Sustain. Agric. Rev. 2012;11:183–221.

Rana K.L., Kour D., Kaur T. Endophytic microbes: Biodiversity, plant growth-promoting mechanisms and potential applications for agricultural sustainability. Antonie Van Leeuwenhoek. 2020;113:1075–1107. doi: 10.1007/s10482-020-01429-y. PubMed DOI

Mukherjee A., Bhowmick S., Yadav S., Rashid M., Chouhan G., Vaishya J., Verma J. Re-vitalizing of endophytic microbes for soil health management and plant protection. 3 Biotech. 2021;11:399. doi: 10.1007/s13205-021-02931-4. PubMed DOI PMC

Gunjal A., Waghmode M., Patil N., Kapadnis B. Endophytes and Their Role in Phytoremediation and Biotransformation Process. In: IGI GlobalSharma A., editor. Microbial Biotechnology in Environmental Monitoring and Cleanup. Engineering Science Reference; Harshey, PA, USA: 2018. pp. 238–251.

Khan M.S., Gao J., Chen X., Zhang M., Yang F., Du Y., Moe T.S., Munir I., Xue J., Zhang X. The Endophytic Bacteria Bacillus velezensis Lle-9, Isolated from Lilium leucanthum, Harbors Antifungal Activity and Plant Growth-Promoting Effects. J. Microbiol. Biotechnol. 2020;30:668–680. doi: 10.4014/jmb.1910.10021. PubMed DOI PMC

Glick B.R. Plant growth-promoting bacteria: Mechanisms and applications. Scientifica. 2012;2012:963401. doi: 10.6064/2012/963401. PubMed DOI PMC

Gaiero J.R., McCall C.A., Thompson K.A., Day N.J., Best A.S., Dunfield K.E. Inside the root microbiome: Bacterial root endophytes and plant growth promotion. Am. J. Bot. 2013;100:1738–1750. doi: 10.3732/ajb.1200572. PubMed DOI

Fadiji A.E., Babalola O.O. Elucidating Mechanisms of Endophytes Used in Plant Protection and Other Bioactivities with Multifunctional Prospects. Front. Bioeng. Biotechnol. 2020;8:467–487. doi: 10.3389/fbioe.2020.00467. PubMed DOI PMC

Morales-Cedeno L.R., Orozco-Mosqueda M.d.C., Loeza-Lara P.D., Parra-Cota F.I., de los Santos-Villalobos S., Santoyo G. Plant growth-promoting bacterial endophytes as biocontrol agents of pre- and post-harvest diseases: Fundamentals, methods of application and future perspectives. Microbiol. Res. 2021;242:126612. doi: 10.1016/j.micres.2020.126612. PubMed DOI

Fouda A., Eid A.M., Elsaied A., El-Belely E.F., Barghoth M.G., Azab E., Gobouri A.A., Hassan S.E.-D. Plant Growth-Promoting Endophytic Bacterial Community Inhabiting the Leaves of Pulicaria incisa (Lam.) DC Inherent to Arid Regions. Plants. 2021;10:76. doi: 10.3390/plants10010076. PubMed DOI PMC

Orozco-Mosqueda M.d.C., Flores A., Rojas-Sánchez B., Urtis-Flores C.A., Morales-Cedeño L.R., Valencia-Marin M.F., Chávez-Avila S., Rojas-Solis D., Santoyo G. Plant Growth-Promoting Bacteria as Bioinoculants: Attributes and Challenges for Sustainable Crop Improvement. Agronomy. 2021;11:1167. doi: 10.3390/agronomy11061167. DOI

Fadiji A.E., Babalola O.O., Santoyo G., Perazzolli M. The Potential Role of Microbial Biostimulants in the Amelioration of Climate Change-Associated Abiotic Stresses on Crops. Front. Microbiol. 2022;12:829099. doi: 10.3389/fmicb.2021.829099. PubMed DOI PMC

Schmidt C.S., Mrnka L., Frantík T., Lovecká P., Vosádka M. Plant growth promotion of Miscanthus × giganteus by endophytic bacteria and fungi on non-polluted and polluted soils. World J. Microbiol. Biotechnol. 2018;13:48. doi: 10.1007/s11274-018-2426-7. PubMed DOI

Koubek J., Uhlík O., Ječná K., Junková P., Vrkoslavová J., Lipov J., Kurzawová V., Macek T., Macková M. Whole-cell MALDI-TOF: Rapid screening method in environmental microbiology. Int. Biodeterior. Biodegrad. 2012;69:82–86. doi: 10.1016/j.ibiod.2011.12.007. DOI

Li Z., Chang S., Lin L., Li Y., An Q. A colorimetric assay of 1-aminocyclopropane-1-carboxylate (ACC) based on ninhydrin reaction for rapid screening of bacteria containing ACC deaminase. Lett. Appl. Microbiol. 2011;53:178–185. doi: 10.1111/j.1472-765X.2011.03088.x. PubMed DOI

Louden B.C., Haarmann D., Lynne A.M. Use of Blue Agar CAS Assay for Siderophore Detection. J. Microbiol. Biol. Educ. 2011;12:51–53. doi: 10.1128/jmbe.v12i1.249. PubMed DOI PMC

Jasim B., Jimtha C.J., Jyothis M., Radhakrishnan E.K. Plant growth promoting potential of endophytic bacteria isolated from Piper nigrum. Plant Growth Regul. 2013;71:1–11. doi: 10.1007/s10725-013-9802-y. DOI

Dadarwal K.R., Kundu B.S., Tauro P. In vitro and in vivo nitrogenase activity of Rhizobium mutants and their symbiotic effectivity. J. Biosci. 1981;3:117–124. doi: 10.1007/BF02702653. DOI

Hajšlová J., Fenclová M., Zachariašová M. Methodology for the Rapid Screening of Isolates of Endophytic Microorganisms and Identification of Strains with Phytohormonal Activity. UCT Prague; Prague, Czech Republic: 2013. (In Czech)

Landa B.B., Hervás A., Bettiol W., Jiménez-Díaz R.M. Antagonistic activity of Bacteria from the chickpea rhizosphere against Fusarium Oxysporum f. sp. Ciceris. Phytoparasitica. 1997;25:305–318. doi: 10.1007/BF02981094. DOI

Manka M., Visconti A., Chełkowski J., Baottalico A. Pathogenicity of Fusarium Isolates from Wheat, Rye and Triticale Towards Seedlings and their Ability to Produce Trichothecenes and Zearalenone. J. Phytopathol. 2008;113:24–29. doi: 10.1111/j.1439-0434.1985.tb00820.x. DOI

Loper J.E., Gross H. Genomic analysis of antifungal metabolite production by Pseudomonas fluorescens Pf-5. Eur. J. Plant Pathol. 2007;119:265–278. doi: 10.1007/s10658-007-9179-8. DOI

Coutinho T.A., Venter S.N. Pantoea ananatis: An unconventional plant pathogen. Mol. Plant Pathol. 2009;10:325–335. doi: 10.1111/j.1364-3703.2009.00542.x. PubMed DOI PMC

Scales B.S., Dickson R.P., LiPuma J.J., Huffnagle G.B. Microbiology, genomics, and clinical significance of the Pseudomonas fluorescens species complex, an unappreciated colonizer of humans. Clin. Microbiol. Rev. 2014;27:927–948. doi: 10.1128/CMR.00044-14. PubMed DOI PMC

Johnston-Monje D., Raizada M.N. Conservation and diversity of seed associated endophytes in Zea across boundaries of evolution, ethnography and ecology. PLoS ONE. 2011;6:e20396. doi: 10.1371/journal.pone.0020396. PubMed DOI PMC

Verma P., Yadav A.N., Kazy S.K., Saxena A.K., Suman A. Evaluating the diversity and phylogeny of plant growth promoting bacteria associated with wheat (Triticum aestivum) growing in central zone of India. Int. J. Curr. Microbiol. Appl. Sci. 2014;3:432–447.

Zhang Y., He L., Chen Z., Wang Q., Qian M., Sheng X. Characterization of ACC deaminase-producing endophytic bacteria isolated from copper-tolerant plants and their potential in promoting the growth and copper accumulation of Brassica napus. Chemosphere. 2011;83:57–62. doi: 10.1016/j.chemosphere.2011.01.041. PubMed DOI

Trivedi P., Spann T., Wang N. Isolation and characterization of beneficial bacteria associated with citrus roots in Florida. Microb. Ecol. 2011;62:324–336. doi: 10.1007/s00248-011-9822-y. PubMed DOI

Belimov A.A., Safronova V.I., Sergeyeva T.A., Egorova T.N., Matveyeva V.A., Tsyganov V.E., Borisov A.Y., Tikhonovich I.A., Kluge C., Preisfeld A., et al. Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Can. J. Microbiol. 2011;47:642–652. doi: 10.1139/w01-062. PubMed DOI

Oliveira C.A., Alves V.M.C., Marriel I.E., Gomes E.A., Scotti M.R., Carneiro N.P., Guimaraes C.T., Schaffert R.E., Sá N.M.H. Phosphate solubilizing microorganisms isolated from rhizosphere of maize cultivated in an oxisol of the Brazilian Cerrado Biome. Soil Biol. Biochem. 2009;41:1782–1787. doi: 10.1016/j.soilbio.2008.01.012. DOI

Cornelis P. Iron uptake and metabolism in pseudomonads. Appl. Microbiol. Biotechnol. 2010;86:1637–1645. doi: 10.1007/s00253-010-2550-2. PubMed DOI

Chen L., Dodd I.C., Theobald J.C., Belimov A.A., Davies W.J. The rhizobacterium Variovorax paradoxus 5C-2, containing ACC deaminase, promotes growth and development of Arabidopsis thaliana via an ethylene-dependent pathway. J. Exp. Bot. 2013;64:1565–1573. doi: 10.1093/jxb/ert031. PubMed DOI PMC

Flores-Duarte N.J., Pérez-Pérez J., Navarro-Torre S., Mateos-Naranjo E., Redondo-Gómez S., Pajuelo E., Rodríguez-Llorente I.D. Improved Medicago sativa Nodulation under Stress Assisted by Variovorax sp. Endophytes. Plants. 2022;11:1091. doi: 10.3390/plants11081091. PubMed DOI PMC

Méndez M.O., Maier R.M. Phytoestabilisation of mine tailings in arid and semiarid environments: An emerging remediation technology. Environmetal Health Perspecives. 2008;116:278–283. doi: 10.1289/ehp.10608. PubMed DOI PMC

Sakakibara H. Cytokinins: Activity, biosynthesis, and translocation. Annu. Rev. Plant Biol. 2006;57:431–449. doi: 10.1146/annurev.arplant.57.032905.105231. PubMed DOI

Kido K., Hasegawa M., Matsumoto H., Kobayashi M., Takikawa Y. Pantoea ananatis strains are differentiated into three groups based on reactions of tobacco and welsh onion and on genetic characteristics. J. Gen. Plant Pathol. 2010;76:208–218. doi: 10.1007/s10327-010-0230-9. DOI

Pérez-Martínez I., Zhao Y., Murillo J., Sundin G.W., Ramos C. Global genomic analysis of Pseudomonas savastanoi pv. savastanoi plasmids. J. Bacteriol. 2008;190:625–635. PubMed PMC

Kochar M., Upadhyay A., Srivastava S. Indole-3-acetic acid biosynthesis in the biocontrol strain Pseudomonas fluorescens Psd and plant growth regulation by hormone overexpression. Res. Microbiol. 2011;162:426–435. doi: 10.1016/j.resmic.2011.03.006. PubMed DOI

Jha P.N., Gupta G., Jha P., Mehrotra R. Association of rhizospheric/endophytic bacteria with plants: A potential gateway to sustainable agriculture. Greener J. Agric. Sci. 2013;3:73–84.

Stewart A., Cromey M. Identifying disease threats and management practices for bio-energy crops. Curr. Opin. Environ. Sustain. 2011;3:75–80. doi: 10.1016/j.cosust.2010.10.008. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...