Impacts of ultraviolet and photosynthetically active radiations on photosynthetic efficiency and antioxidant systems of the cyanobacterium Spirulina subsalsa HKAR-19
Language English Country United States Media print-electronic
Document type Journal Article
PubMed
38041744
DOI
10.1007/s12223-023-01110-7
PII: 10.1007/s12223-023-01110-7
Knihovny.cz E-resources
- Keywords
- Antioxidant, Lipid peroxidation, Photosystem II, Reactive oxygen species, Ultraviolet radiation,
- MeSH
- Antioxidants * metabolism MeSH
- Chlorophyll A metabolism MeSH
- Chlorophyll * metabolism MeSH
- Photosynthesis * radiation effects MeSH
- Photosystem II Protein Complex metabolism MeSH
- Phycocyanin * metabolism MeSH
- Carotenoids metabolism MeSH
- Lipid Peroxidation radiation effects MeSH
- Reactive Oxygen Species * metabolism MeSH
- Spirulina * radiation effects metabolism MeSH
- Ultraviolet Rays * MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Antioxidants * MeSH
- Chlorophyll A MeSH
- Chlorophyll * MeSH
- Photosystem II Protein Complex MeSH
- Phycocyanin * MeSH
- Carotenoids MeSH
- Reactive Oxygen Species * MeSH
This study summarizes the response of cyanobacterium Spirulina subsalsa HKAR-19 under simulated light conditions of photosynthetically active radiation (PAR), PAR+UV-A (PA), and PAR+UV-A+UV-B (PAB). Exposure to UV radiation caused a significant (P < 0.05) decrease in chlorophyll a, phycocyanin, and total protein. In contrast, total carotene content increased significantly (P < 0.05) under PA and PAB with increasing irradiation time. The photosynthetic efficiency of photosystem II also decreased significantly in PA and PAB radiation. We have also recorded a decrease in the fluorescence emission intensity of phycocyanin under PA and PAB exposure. The phycocyanin fluorescence shifted towards shorter wavelengths (blue-shift) after 72 h of PA and PAB exposure. Intracellular reactive oxygen species (ROS) levels increased significantly in PA and PAB. Fluorescence microscopic images showed an increase in green fluorescence, indicating ROS generation in UV radiation. We have also quantified ROS generation using green and red fluorescence ratio represented as G/R ratio. A 2-6-fold increase in antioxidative enzymes activity was observed to overcome the damaging effects caused by UV stress as compared to untreated control cultures. The lipid peroxidation was assessed in terms of malondialdehyde content which increases significantly (P < 0.05) as the duration of exposure increases. These results suggest that a combined effect of PAR, UV-A, and UV-B was more deleterious than an individual one.
See more in PubMed
Aebi H (1984) Catalase in vitro. Methods in enzymology. In: Packer L (ed) Academic Press Inc, San Diego, pp 121–126. https://doi.org/10.1016/S0076-6879(84)05016-3
Agrawal S, Singh S, Agrawal M (2009) Ultraviolet-B induced changes in gene expression and antioxidants in plants. Adv Bot Res 52:47–86. https://doi.org/10.1016/j.plantsci.2005.05.004 DOI
Al-Rumaih MM, Al-Rumaih MM (2008) Influence of ionizing radiation on antioxidant enzymes in three species of Trigonella. Am J Environ Sci 4:151–156. https://doi.org/10.3844/ajessp.2008.151.156 DOI
Babadzhanov AS, Abdusamatova N, Yusupova FM, Faizullaeva N, Mezhlumyan LG, Malikova MK (2004) Chemical Composition of Spirulina platensis Cultivated in Uzbekistan. Chem Nat Compd 40:276–279. https://doi.org/10.1023/B:CONC.0000039141.98247.e8
Babu TS, Akhtar TA, Lampi MA, Tripuranthakam S, Dixon DG, Greenberg BM (2003) Similar stress responses are elicited by copper and ultraviolet radiation in the aquatic plant Lemna gibba: implication of reactive oxygen species as common signals. Plant Cell Physiol 44:1320–1329. https://doi.org/10.1093/pcp/pcg160 PubMed DOI
Beauchamp C, Fridovich I (1971) Superoxide dismutase:improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287. https://doi.org/10.1016/0003-2697(71)90370-8 PubMed DOI
Bebout BM, Garcia-Pichel F (1995) UV-B induced vertical migrations of cyanobacteria in a microbial mat. Appl Environ Microbiol 61:4215–4222. https://doi.org/10.1128/aem.61.12.4215-4222.1995 PubMed DOI PMC
Bernroitner M, Zamocky M, Furtmüller PG, Peschek GA, Obinger C (2009) Occurrence, phylogeny, structure, and function of catalases and peroxidases in cyanobacteria. J Exp Bot 60:423–440. https://doi.org/10.1093/jxb/ern309 PubMed DOI
Bhandari R, Sharma PK (2006) High-light-induced changes on photosynthesis, pigments, sugars, lipids and antioxidant enzymes in freshwater (Nostoc spongiaeforme) and marine (Phormidium corium) cyanobacteria Photochem Photobiol 82:702–710. https://doi.org/10.1562/2005-09-20-RA-690
Britton C, Mehley AC (1955) Assay of catalase and peroxidase. In: Colowick SP, Kalpan NO (eds) Method in enzymology. Academic, New York, pp 764–775
Bryant DA, Guglielmi G, Tandeau de Marsac N, Castlets AM, Cohen- Bazire G (1979) The structure of cyanobacterial phycobilisomes:a model. Arch Microbiol 123:113–127. https://doi.org/10.1007/BF00446810 DOI
Chris A, Zeeshan M, Abraham G, Prasad SM (2006) Proline accumulation in Cylindrospermum sp. Environ Exp Bot 57:154–159. https://doi.org/10.1016/j.envexpbot.2005.05.008 DOI
Crow JP (1997) Dichlorodihydrofluorescein and dihydrorhodamine 123 are sensitive indicators of peroxynitritein vitro: implications for intracellular measurement of reactive nitrogen and oxygen species. Nitric Oxide 1:145–157. https://doi.org/10.1006/niox.1996.0113 PubMed DOI
Crutzen PJ (1992) Ultraviolet on the Increase. Nature 356:104–105. https://doi.org/10.1038/356104a0 DOI
Dere S, Günes T, Sivaci R (1998) Spectrophotometric determination of chlorophyll-A, B and total carotenoid contents of some algae species using different solvents. Turk J Bot 22:13–17
Dhindsa RS, Matowe W (1981) Drought tolerance in two mosses: correlated with enzymatic defence against lipid peroxidation. J Exp Bot 32:79–91. https://doi.org/10.1093/jxb/32.1.79 DOI
Dhindsa RS, Plumb-Dhindsa P, Thorpe TA (1981) Leaf Senescence: Correlated with Increased Levels of Membrane Permeability and Lipid Peroxidation, and Decreased Levels of Superoxide Dismutase and Catalase. J Exp Bot 32:93–101. https://doi.org/10.1093/jxb/32.1.93 DOI
Dillon JG, Miller SR, Castenholz RW (2003) UV-acclimation responses in natural populations of cyanobacteria (Calothrix sp.). Environ Microbiol 5:473–483. https://doi.org/10.1046/j.1462-2920.2003.00435.x PubMed DOI
Donkor V, Häder D-P (1991) Effects of solar and ultraviolet radiation on motility, photomovement and pigmentation in filamentous, gliding cyanobacteria. FEMS Microbiol Lett 86:2159–2168. https://doi.org/10.1111/j.1574-6968.1991.tb04805.x DOI
Donkor VA, Amewowor DHAK, Häder D-P (1993) Effects of tropical solar radiation on the motility of filamentous cyanobacteria. FEMS Microbiol Ecol 12:143–148. https://doi.org/10.1111/j.1574-6968.1991.tb04805.x DOI
Fischer WW (2008) Biogeochemistry: Life before the rise of oxygen. Nature 455:1051–1052. https://doi.org/10.1038/4551051a PubMed DOI
Gao K, Ma Z (2008) Photosynthesis and growth of Arthrospira (Spirulina) platensis (Cyanophyta) in response to solar UV radiation, with special reference to its minor variant. Environ Exp Bot 63:123–129. https://doi.org/10.1016/j.envexpbot.2007.10.031 DOI
Gao K, Wu Y, Li G, Wu H, Villafa˜ne VE, Helbling EW (2007) Solar UV radiation drives CO PubMed DOI PMC
Gupta R, Bhadauriya P, Chauhan VS, Bisen PS (2008) Impact of UV-B radiation on thylakoid membrane and fatty acid profile of Spirulina platensis. Curr Microbiol 56:156–161. https://doi.org/10.1007/s00284-007-9049-9 PubMed DOI
Häder D-P (1984) Effects of UV-B on motility and photoorientation in the cyanobacterium, Phormidium uncinatum. Arch Microbiol 1140:34–39. https://doi.org/10.1007/BF00409768 DOI
Halliwell B, Gutteridge JMC (1999) Free Radicals in Biology and Medicine. In: Halliwell B, Gutteridge JMC (eds) Free Radicals in Biology and Medicine, 3rd edn. Oxford University Press, Oxford, pp 1–25
Hargreaves A, Taiwo FA, Duggan O, Kirk SH, Ahmad SI (2007) Near-ultraviolet photolysis of b-phenylpyruvic acid generates free radicals and results in DNA damage. J Photochem Photobiol b: Biol 89:110–116. https://doi.org/10.1016/j.jphotobiol.2007.09.007 DOI
Hase Y, Yamaguchi Inoue M, Tanaka A (2002) Reduction of survival and induction of chromosome aberrations in tobacco irradiated by carbon ions with different linear energy transfers. Int J Radiat Biol 78:799–806. https://doi.org/10.1080/09553000210152971 PubMed DOI
He Y-Y, Klisch M, Häder D-P (2002) Adaptation of cyanobacteria to UV-B stress correlated with oxidative stress and oxidative damage. Photochem Photobiol 76:188–196. https://doi.org/10.1562/0031-8655(2002)0760188AOCTUB2.0.CO2 PubMed DOI
He Y-Y, Häder D-P (2002a) UV-B-induced formation of reactive oxygen species and oxidative damage of the cyanobacterium Anabaena sp.: protective effects of ascorbic acid and N-acetyl-L-cysteine. J Photochem Photobiol B 66:115–124. https://doi.org/10.1016/S1011-1344(02)00231-2 PubMed DOI
He Y-Y, Häder D-P (2002b) Reactive oxygen species and UV-B: effect on cyanobacteria. Photochem Photobiol Sci 1:729–736. https://doi.org/10.1039/B110365M PubMed DOI
Ishikawa T, Shigeoka S (2008) Recent advances in ascorbate biosynthesis and the physiological significance of ascorbate peroxidase in photosynthesizing organisms. Biosci Biotechnol Biochem 72:1143–1154. https://doi.org/10.1271/bbb.80062 PubMed DOI
Janknegt PJ, van de Poll WH, Visser RJW, Rijstenbil JW, Boma AGJ (2008) Oxidative stress responses in the marine Antarctic diatom Chaetocerosbrevis (Bacillariophyceae) during photoacclimation. J Phycol 44:957–966. https://doi.org/10.1111/j.1529-8817.2008.00553.x PubMed DOI
Jantaro S, Baebprasert W, Piyamawadee C, Sodsuay O, Incharoensakdi A (2014) Exogenous spermidine alleviates UV-induced growth inhibition of Synechocystis sp. PCC 6803 via reduction of hydrogen peroxide and malonaldehyde levels. Appl Biochem Biotechnol 173:1145–1156. https://doi.org/10.1007/s12010-014-0887-1 PubMed DOI
Jordan BR (1996) The effects of ultraviolet-B radiation on plants: a molecular perspective. Adv Bot Res 22:97–162 DOI
Kannaujiya VK, Sinha RP (2017a) Impacts of diurnal variation of ultraviolet-B and photosynthetically active radiation on phycobiliproteins of the hot-spring cyanobacterium Nostoc sp. strain HKAR-2. Protoplasma 254:423–433. https://doi.org/10.1007/s00709-016-0964-0 PubMed DOI
Kannaujiya VK, Sinha RP (2016) An efficient method for separation and purification of phycobiliproteins from rice-field cyanobacterium Nostoc sp. strain HKAR-11. Chromatographia 79:335–343. https://doi.org/10.1007/s10337-016-3025-0 DOI
Kannaujiya VK, Sinha RP (2017b) Detection of free thiols and fluorescence response of phycoerythrin chromophore after ultraviolet-B radiation stress. J Fluoresc 27:561–567. https://doi.org/10.1007/s10895-016-1983-0 PubMed DOI
Koller M, Muhr A, Braunegg G (2014) Microalgae as versatile cellular factories for valued products. Algal Res 6:52–63. https://doi.org/10.1016/j.algal.2014.09.002 DOI
Kruschel C, Castenholz RW (1998) The effect of solar UV and visible irradiance on the vertical movements of cyanobacteria in microbial mats of hypersaline waters. FEMS Microbiol Ecol 27:53–72. https://doi.org/10.1111/j.1574-6941.1998.tb00525.x DOI
Kumar A, Tyagi MB, Jha PN, Srinivas G, Singh A (2003) Inactivation of cyanobacterial nitrogenase after exposure to ultraviolet-B radiation. Curr Microbiol 46:380–384. https://doi.org/10.1007/s00284-001-3894-8 PubMed DOI
Li P, Gao K (2008) Effects of solar UV and visible radiations on the spiral structure and orientation of Arthrospira (Spirulina) platensis (Cyanophyta). Phycologia 47:573–579. https://doi.org/10.2216/08-19.1 DOI
Lowry HO, Rosenbrough NJ, Farr AL, Randell RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275 PubMed DOI
Lu C, Vonshak A (2002) Effects of salinity stress on photosystem II function in cyanobacterial Spirulina platensis cells. Physiol Plant 114:405–413. https://doi.org/10.1034/j.1399-3054.2002.1140310.x PubMed DOI
Marwood CA, Greenberg BM (1996) Effect of supplementary UV-B radiation on chlorophyll synthesis and accumulation of photosystems during chloroplast development in Spirodela oligorrhiza. Photochem Photobiol 64:664–670. https://doi.org/10.1111/j.1751-1097.1996.tb03121.x DOI
Mishra P, Prasad SM (2021) Low dose UV-B radiation induced mild oxidative stress impact on physiological and nutritional competence of Spirulina (Arthrospira) species. Plant Stress 2:100039. https://doi.org/10.1016/j.stress.2021.100039 DOI
Miyake C, Michihata F, Asada K (1991) Scavenging of hydrogen peroxide in prokaryotic and eukaryotic algae. Plant Cell Physiol 32:33–43. https://doi.org/10.1093/oxfordjournals.pcp.a078050 DOI
Mondal S, Kumar V, Singh SP (2020) Oxidative stress measurement in different morphological forms of wild-type and mutant cyanobacterial strains: overcoming the limitation of fluorescence microscope-based method. Ecotoxicol Environ Saf 200:110730. https://doi.org/10.1016/j.ecoenv.2020.110730 PubMed DOI
Mutsuda M, Ishikawa T, Takeda T, Shigeoka S (1996) The catalase-peroxidase of Synechococcus PCC 7942: purification, nucleotide sequence analysis and expression in Escherichia coli. Biochem J 316:251–257. https://doi.org/10.1042/bj3160251 PubMed DOI PMC
Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880. https://doi.org/10.1093/oxfordjournals.pcp.a076232 DOI
Niyogi KK (1999) Photoprotection revisited: genetics and molecular approaches. Annu Rev Plant Physiol 50:333–359. https://doi.org/10.1146/annurev.arplant.50.1.333 DOI
Noctor G, Foyer CHA (1998) Re-evaluation of the ATP: NADPH budget during C DOI
Olson JM (2006) Photosynthesis in the Archean era. Photosynth Res 88:109–117. https://doi.org/10.1007/s11120-006-9040-5 PubMed DOI
Parada JL, de Caire GZ, de Mule MCZ, de Cano MMS (1998) Lactic acid bacteria growth promoters from Spirulina platensis. Int J Food Microbiol 45:225–228. https://doi.org/10.1016/S0168-1605(98)00151-2 PubMed DOI
Prasad SM, Zeeshan M (2004) Effect of UV-B and monocrotophos, singly and in combination, on photosynthetic activity and growth of non-heterocystous cyanobacterium Plectonema boryanum. Environ Exp Bot 52:175–184. https://doi.org/10.1016/S0176-1617(98)80232-0 DOI
Quesada A, Mouget JL, Vincent WF (1995) Growth of Antarctic cyanobacteria under ultraviolet radiation: UV-A counteracts UV-B inhibition. J Phycol 31:242–248. https://doi.org/10.1111/j.0022-3646.1995.00242.x DOI
Rajneesh, Pathak J, Chatterjee A, Singh SP, Sinha RP (2017) Detection of Reactive Oxygen Species (ROS) in Cyanobacteria Using the Oxidant-sensing Probe 2’, 7’-Dichlorodihydrofluorescein Diacetate (DCFH-DA). Bio-protocol 7:2545–2545. https://doi.org/10.21769/BioProto.2545
Rastogi RP, Madamwar D (2015) UV-induced oxidative stress in cyanobacteria: how life is able to survive? Biochem Anal Biochem 1:1000173. https://doi.org/10.4172/2161-1009.1000173 DOI
Rastogi RP, Madamwar D, Incharoensakdi A (2014) Multiple defense systems in cyanobacteria in response to solar UV radiation. In: Davison D (ed) Cyanobacteria, Nova Science Publisher, Inc., pp 125–158
Rastogi RP, Singh SP, Häder D-P, Sinha RP (2010a) Detection of reactive oxygen species (ROS) by the oxidant sensing probe 2′,7′-dichlorodihydrofluorescein diacetate in the cyanobacterium Anabaena variabilis PCC 7937. Biochem Biophys Res Commun 397:603–607. https://doi.org/10.1016/j.bbrc.2010.06.006 PubMed DOI
Rastogi RP, Richa SRP, Singh SP, Häder D-P (2010b) Photoprotective compounds from marine organisms. J Ind Microbiol Biotechnol 37:537–558. https://doi.org/10.1007/s10295-010-0718-5 PubMed DOI
Rastogi RP, Sinha RP (2009) Biotechnological and industrial significance of cyanobacterial secondary metabolites. Biotechnol Adv 27:521–539. https://doi.org/10.1016/j.biotechadv.2009.04.009 PubMed DOI
Rastogi RP, Sonani RR, Madamwar D (2015) Effects of PAR and UV radiation on the structural and functional integrity of phycocyanin, phycoerythrin and allophycocyanin isolated from the marine cyanobacterium Lyngbya sp. A09DM. Photochem Photobiol 91:837–844. https://doi.org/10.1111/php.12449 PubMed DOI
Ravishankara AR, Daniel JS, Portmann R (2009) Nitrous Oxide (N PubMed DOI
Rinalducci S, Pedersen JZ, Zolla L (2008) Generation of reactive oxygen species upon strong visible light irradiation of isolated phycobilisomes from Synechocystis PCC 6803. Biochim Biophys Acta 1777:417–424. https://doi.org/10.1016/j.bbabio.2008.02.005 PubMed DOI
Sass L, Spetea C, Máté Z, Nagy F, Vass I (1997) Repair of UV-B induced damage of photosystem II via de novo synthesis of the D1 and D2 reaction center subunits in Synechocystis sp. PCC 6803. Photosynth Res 54:55–62. https://doi.org/10.1023/A:1005895924892 DOI
Schreiber U (2004) Pulse-amplitude-modulation (PAM) Fluorometry and Saturation Pulse Method: An overview. In: Papageorgiou GC, Govindjee (ed) Chlorophyll a Fluorescence, Advances in Photosynthesis and Respiration. Springer, Dordrecht, pp 279–319. https://doi.org/10.1007/978-1-4020-3218_11
Sicora C, Máté Z, Vass I (2003) The interaction of visible and UV-B light during photodamage and repair of Photosystem II. Photosynth Res 75:127–137. https://doi.org/10.1023/A:1022852631339 PubMed DOI
Singh G, Babele PK, Sinha RP, Tyagi MB, Kumar A (2013) Enzymatic and non-enzymatic defense mechanisms against ultraviolet-B radiation in two Anabaena species. Process Biochem 48:796–802. https://doi.org/10.1093/jxb/ern309 DOI
Singh H, Khattar JS, Ahluwalia AS (2014a) Cyanobacteria and Agricultural Crops Vegetos 27:37–44. https://doi.org/10.5958/j.2229-4473.27.1.008 DOI
Singh SP, Häder D-P, Sinha RP (2010) Cyanobacteria and ultraviolet radiation (UVR) stress: Mitigation strategies. Ageing Res Rev 9:79–90. https://doi.org/10.1016/j.arr.2009.05.004 PubMed DOI
Singh SP, Rastogi RP, Häder D-P, Sinha RP (2014b) Temporal dynamics of ROS biogenesis under simulated solar radiation in the cyanobacterium Anabaena variabilis PCC 7937. Protoplasma 251:1223–1230. https://doi.org/10.1007/s00709-014-0630-3 PubMed DOI
Sinha RP, Dautz M, Gröniger A, Häder D-P (2001a) A simple and efficient method for the quantitative analysis of thymine dimers in cyanobacteria, phytoplankton and macroalgae. Acta Protozool 40:187–195
Sinha RP, Häder D-P (1998) Effects of ultraviolet-B radiation in three rice field cyanobacteria. J Plant Physiol 153:763–769. https://doi.org/10.1016/S0176-1617(98)80232-0 DOI
Sinha RP, Klisch M, Gröniger A, Häder D-P (2001b) Responses of aquatic algae and cyanobacteria to solar UV-B. Plant Ecol 154:221–236. https://doi.org/10.1007/978-94-017-2892-8_21 DOI
Sinha RP, Kumar HD, Kumar A, Häder D-P (1995a) Effects of UV-B irradiation on growth, survival, pigmentation and nitrogen metabolism enzymes in cyanobacteria. Acta Protozool 34:187–192
Sinha RP, Lebert M, Kumar A, Kumar HD, Häder D-P (1995b) Spectroscopic and biochemical analyses of UV effects on phycobiliproteins of Anabaena sp. and Nostoc carmium. Bot Acta 108:87–92. https://doi.org/10.1111/j.1438-8677.1995.tb00836.x DOI
Stapleton AE (1992) Ultraviolet radiation and plants: burning questions. Plant Cell 4:1353–1358. https://doi.org/10.1105/tcp.4.11.1353 PubMed DOI PMC
Tel-Or E, Huflejt ME, Packer L (1986) Hydroperoxide metabolism in cyanobacteria. Arch Biochem Biophys 246:396–402. https://doi.org/10.1016/0003-9861(86)90485-6 PubMed DOI
Tichy M, Vermaas W (1999) In Vivo role of catalase-peroxidase in Synechocystis sp. strain PCC 6803. J Bacteriol 181:1875–1882. https://doi.org/10.1128/JB.181.6.1875-1882.1999 PubMed DOI PMC
Tripathi SN, Srivastava P (2001) Presence of stable active oxygen scavenging enzymes superoxide dismutase, ascorbate peroxidase and catalase in a desiccation-tolerant cyanobacterium Lyngbya arboricola under dry state. Curr Sci 81:197–200
Vonshak A (1997) Spirulina platensis (Arthrospira): physiology, cell-biology and biotechnology, 1st edn. Taylor and Francis Ltd., London DOI
Wang GH, Hu CX, Li DH (2007a) The response of antioxidant systems in Nostoc sphaeroides against UV-B radiation and the protective effects of exogenous antioxidants. Adv Space Res 39:1034–1042. https://doi.org/10.1016/j.asr.2007.03.022 DOI
Wang L, Pan B, Sheng J, Xu J, Hu Q (2007b) Antioxidant activity of Spirulina platensis extracts by supercritical carbon dioxide extraction. Food Chem 105:36–41. https://doi.org/10.1016/j.foodchem.2007.03.054 DOI
Wendehenne D, Durner J, Klessig DF (2004) Nitric oxide: a new player in plant signalling and defence responses. Curr Opin Plant Biol 7:449–455. https://doi.org/10.1016/j.pbi.2004.04.002 PubMed DOI
Wu H, Gao K, Villafa˜ne V, Watanabe T, Helbling EW (2005) Effects of solar UV radiation on morphology andphotosynthesis of the filamentous cyanobacterium Arthrospira platensis. Appl Environ Microb 71:5004–5013. https://doi.org/10.1128/AEM.71.9.5004-5013.2005 DOI
Zeeshan M, Prasad SM (2009) Differential response of growth, photosynthesis, antioxidant enzymes and lipid peroxidation to UV-B radiation in three cyanobacteria. S Afr J Bot 75:466–474. https://doi.org/10.1016/j.sajb.2009.03.003 DOI
Zhang PY, Yu J, Tang XX (2005) UV-B radiation suppresses the growth and antioxidant systems of two marine microalgae, Platymonas subcordiformis (Wille) Hazen and Nitzschia closterium (Ehrenb.) W Sm J Integr Plant Biol 47:683–691. https://doi.org/10.1111/j.1744-7909.2005.00052.x