Oocyte activation is a cytoplasm-confined event so far: what about the nucleus?
Language English Country Great Britain, England Media electronic-print
Document type Journal Article
PubMed
38112585
PubMed Central
PMC10895280
DOI
10.1530/rep-23-0360
PII: e230360
Knihovny.cz E-resources
- MeSH
- Cytoplasm metabolism MeSH
- Fertilization MeSH
- Humans MeSH
- Oocytes metabolism MeSH
- Semen * metabolism MeSH
- Spermatozoa metabolism MeSH
- Calcium * metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Calcium * MeSH
The fertilizing spermatozoa induce a Ca2+ oscillatory pattern, the universal hallmark of oocyte activation, in all sexually reproducing animals. Assisted reproductive technologies (ARTs) like intracytoplasmic sperm injection (ICSI) bypass the physiological pathway; however, while a normal Ca2+ release pattern occurs in some species, particularly humans, artificial activation is compulsory for ICSI-fertilized oocytes to develop in most farm animals. Unlike the normal oscillatory pattern, most artificial activation protocols induce a single Ca2+ spike, undermining proper ICSI-derived embryo development in these species. Curiously, diploid parthenogenetic embryos activated by the same treatments develop normally at high frequencies and implant upon transfer in the uterus. We hypothesized that, at least in ruminant embryos, the oscillatory calcium waves late in the first cell cycle target preferentially the paternal pronucleus and are fundamentally important for paternal nuclear remodeling. We believe that Ca2+ signaling is central to full totipotency deployment of the paternal genome. Research in this area could highlight the asymmetry between the parental genome reprogramming timing/mechanisms in early development and impact ARTs like ICSI and cloning.
See more in PubMed
Balakier H Dziak E Sojecki A Librach C Michalak M & Opas M. 2002Calcium-binding proteins and calcium-release channels in human maturing oocytes, pronuclear zygotes and early preimplantation embryos. Human Reproduction 172938–2947. (10.1093/humrep/17.11.2938) PubMed DOI
Briski O & Salamone DF. 2022Past, present and future of ICSI in livestock species. Animal Reproduction Science 246106925. (10.1016/j.anireprosci.2022.106925) PubMed DOI
Bultman SJ Gebuhr TC Pan H Svoboda P Schultz RM & Magnuson T. 2006Maternal BRG1 regulates zygotic genome activation in the mouse. Genes and Development 201744–1754. (10.1101/gad.1435106) PubMed DOI PMC
Crodian JS Weldon BM Tseng YC Cabot B & Cabot R. 2019Nuclear trafficking dynamics of bromodomain-containing protein 7 (BRD7), a switch/sucrose non-fermentable (SWI/SNF) chromatin remodelling complex subunit, in porcine oocytes and cleavage-stage embryos. Reproduction, Fertility, and Development 311497–1506. (10.1071/RD19030) PubMed DOI PMC
Czernik M Anzalone DA Palazzese L Oikawa M & Loi P. 2019Somatic cell nuclear transfer: failures, successes and the challenges ahead. International Journal of Developmental Biology 63123–130. (10.1387/ijdb.180324mc) PubMed DOI
Fulka H Loi P Czernik M Surani A & Fulka J. 2023Omne vivum ex ovo: the oocyte reprogramming and remodeling activities. Reproduction 165R75–R89. (10.1530/REP-22-0124) PubMed DOI
Herbert M Choudhary M & Zander-Fox D. 2023Assisted reproductive technologies at the nexus of fertility treatment and disease prevention. Science 380164–167. (10.1126/science.adh0073) PubMed DOI
Inoue A Ogushi S Saitou M Suzuki MG & Aoki F. 2011Involvement of mouse nucleoplasmin 2 in the decondensation of sperm chromatin after fertilization. Biology of Reproduction 8570–77. (10.1095/biolreprod.110.089342) PubMed DOI
Lai D Wan M Wu J Preston-Hurlburt P Kushwah R Grundström T Imbalzano AN & Chia T. 2009Induction of TLR4-target genes entails calcium/calmodulin-dependent regulation of chromatin remodeling. PNAS 1061169–1174. (10.1073/pnas.0811274106) PubMed DOI PMC
Loi P Ledda S Fulka J Cappai P & Moor RM. 1998Development of parthenogenetic and cloned ovine embryos: effect of activation protocols. Biology of Reproduction 581177–1187. (10.1095/biolreprod58.5.1177) PubMed DOI
Mazars C Brire C Bourque S & Thuleau P. 2011Nuclear calcium signaling: an emerging topic in plants. Biochimie 932068–2074. (10.1016/j.biochi.2011.05.039) PubMed DOI
Neigeborn L & Carlson M. 1984Genes affecting the regulation of SUC2 gene expression by glucose repression in Saccharomyces cerevisiae. Genetics 108845–858. (10.1093/genetics/108.4.845) PubMed DOI PMC
Ozil JP Banrezes B Tóth S Pan H & Schultz RM. 2006Ca2+ oscillatory pattern in fertilized mouse eggs affects gene expression and development to term. Developmental Biology 300534–544. (10.1016/j.ydbio.2006.08.041) PubMed DOI
Ressaissi Y Anzalone DA Palazzese L Czernik M & Loi P. 2021The impaired development of sheep ICSI derived embryos is not related to centriole dysfunction. Theriogenology 1597–12. (10.1016/j.theriogenology.2020.10.008) PubMed DOI
Salamone DF Canel NG & Rodríguez MB. 2017Intracytoplasmic sperm injection in domestic and wild mammals. Reproduction 154F111–F124. (10.1530/REP-17-0357) PubMed DOI
Stein P Savy V Williams AM & Williams CJ. 2020Modulators of calcium signalling at fertilization. Open Biology 10200118. (10.1098/rsob.200118) PubMed DOI PMC
Swann K.2022Sperm factors and egg activation: PLCzeta as the sperm factor that activates eggs: 20 years on. Reproduction 164E1–E4. (10.1530/REP-22-0148) PubMed DOI PMC
Swann K & Lai FA. 2013PLCζ and the initiation of Ca(2+) oscillations in fertilizing mammalian eggs. Cell Calcium 535–62. (10.1074/jbc.m117.805085) PubMed DOI
Yanagida K Fujikura Y & Katayose H. 2008The present status of artificial oocyte activation in assisted reproductive technology. Reproductive Medicine and Biology 7133–142. (10.1111/j.1447-0578.2008.00210.x) PubMed DOI PMC