• This record comes from PubMed

The tautomer-specific excited state dynamics of 2,6-diaminopurine using resonance-enhanced multiphoton ionization and quantum chemical calculations

. 2024 Mar-Apr ; 100 (2) : 404-418. [epub] 20231220

Status PubMed-not-MEDLINE Language English Country United States Media print-electronic

Document type Journal Article

Grant support
21-23718S Czech Science Foundation
2020/37/B/ST4/04092 National Science Centre, Poland
CHE-2154787 National Science Foundation

2,6-Diaminopurine (2,6-dAP) is an alternative nucleobase that potentially played a role in prebiotic chemistry. We studied its excited state dynamics in the gas phase by REMPI, IR-UV hole burning, and ps pump-probe spectroscopy and performed quantum chemical calculations at the SCS-ADC(2) level of theory to interpret the experimental results. We found the 9H tautomer to have a small barrier to ultrafast relaxation via puckering of its 6-membered ring. The 7H tautomer has a larger barrier to reach a conical intersection and also has a sizable triplet yield. These results are discussed relative to other purines, for which 9H tautomerization appears to be more photostable than 7H and homosubstituted purines appear to be less photostable than heterosubstituted or singly substituted purines.

See more in PubMed

Gustavsson T, Improta R, Markovitsi D. DNA/RNA: building blocks of life under UV irradiation. J Phys Chem Lett. 2010;1:2025-2030.

Middleton CT, de La Harpe K, Su C, Law YK, Crespo-Hernandez CE, Kohler B. DNA excited-state dynamics: from single bases to the double helix. Annu Rev Phys Chem. 2009;60:217-239.

de Vries MS. Isolated DNA base pairs, interplay between theory and experiment. In: Shukla MK, Leszczynski J, eds. Radiation Induced Molecular Phenomena in Nucleic Acids. Springer Science+Business Media B.V; 2008:323-341.

Canuel C, Mons M, Piuzzi F, Tardivel B, Dimicoli I, Elhanine M. Excited states dynamics of DNA and RNA bases: characterization of a stepwise deactivation pathway in the gas phase. J Chem Phys. 2005;122:074316.

Kang H, Lee KT, Jung B, Ko YJ, Kim SK. Intrinsic lifetimes of the excited state of DNA and RNA bases. J Am Chem Soc. 2002;124:12958-12959.

Sponer J, Leszczynski J, Hobza P. Hydrogen bonding, stacking and cation binding of DNA bases. J Mol Struct. 2001;573:43-53.

Beckstead AA, Zhang YY, de Vries MS, Kohler B. Life in the light: nucleic acid photoproperties as a legacy of chemical evolution. Phys Chem Chem Phys. 2016;18:24228-24238.

Pecourt JML, Peon J, Kohler B. DNA excited-state dynamics: ultrafast internal conversion and vibrational cooling in a series of nucleosides. J Am Chem Soc. 2001;123:10370-10378.

Improta R, Santoro F, Blancafort L. Quantum mechanical studies on the photophysics and the photochemistry of nucleic acids and nucleobases. Chem Rev. 2016;116:3540-3593.

Caldero-Rodriguez NE, Ortiz-Rodriguez LA, Gonzalez AA, Crespo-Hernandez CE. Photostability of 2,6-diaminopurine and its 2′-deoxyriboside investigated by femtosecond transient absorption spectroscopy. Phys Chem Chem Phys. 2022;24:4204-4211.

Crespo-Hernandez CE, Martinez-Fernandez L, Rauer C, et al. Electronic and structural elements that regulate the excited-state dynamics in purine nucleobase derivatives. J Am Chem Soc. 2015;137:4368-4381.

Boldissar S, de Vries MS. How nature covers its bases. Phys Chem Chem Phys. 2018;20:9701-9716.

Yamazaki S, Domcke W, Sobolewski AL. Nonradiative decay mechanisms of the biologically relevant tautomer of guanine. J Phys Chem A. 2008;112:11965-11968.

Gate G, Szabla R, Haggmark MR, Sponer J, Sobolewski AL, de Vries MS. Photodynamics of alternative DNA base isoguanine. Phys Chem Chem Phys. 2019;21:13474-13485.

Changenet-Barret P, Kovacs L, Markovitsi D, Gustavsson T. Xanthines studied via femtosecond fluorescence spectroscopy. Molecules. 2016;21:1668.

Rottger K, Stellmacher R, Stuhldreier MC, Temps F. Ultrafast electronic deactivation dynamics of xanthosine monophosphate. Molecules. 2017;22:160.

Luhrs DC, Viallon J, Fischer I. Excited state spectroscopy and dynamics of isolated adenine and 9-methyladenine. Phys Chem Chem Phys. 2001;3:1827-1831.

Lobsiger S, Blaser S, Sinha RK, Frey HM, Leutwyler S. Switching on the fluorescence of 2-aminopurine by site-selective microhydration. Nat Chem. 2014;6:989-993.

Martinez-Fernandez L, Arslancan S, Ivashchenko D, Crespo-Hernandez CE, Corral I. Tracking the origin of photostability in purine nucleobases: the photophysics of 2-oxopurine. Phys Chem Chem Phys. 2019;21:13467-13473.

Guo XG, Lan ZG, Cao ZX. Ab initio insight into ultrafast nonadiabatic decay of hypoxanthine: keto-N7H and keto-N9H tautomers. Phys Chem Chem Phys. 2013;15:10777-10782.

Cohen B, Hare PM, Kohler B. Ultrafast excited-state dynamics of adenine and monomethylated adenines in solution: implications for the nonradiative decay mechanism. J Am Chem Soc. 2003;125:13594-13601.

Ullrich S, Schultz T, Zgierski MZ, Stolow A. Direct observation of electronic relaxation dynamics in adenine via time-resolved photoelectron spectroscopy. J Am Chem Soc. 2004;126:2262-2263.

Kim NJ, Jeong G, Kim YS, Sung J, Kim SK, Park YD. Resonant two-photon ionization and laser induced fluorescence spectroscopy of jet-cooled adenine. J Chem Phys. 2000;113:10051-10055.

Kang H, Chang J, Lee SH, Ahn TK, Kim NJ, Kim SK. Excited-state lifetime of adenine near the first electronic band origin. J Chem Phys. 2010;133:154311.

Buchner F, Ritze HH, Lahl J, Lubcke A. Time-resolved photoelectron spectroscopy of adenine and adenosine in aqueous solution. Phys Chem Chem Phys. 2013;15:11402-11408.

Kang H, Jung B, Kim SK. Mechanism for ultrafast internal conversion of adenine. J Chem Phys. 2003;118:6717-6719.

Marian CM. A new pathway for the rapid decay of electronically excited adenine. J Chem Phys. 2005;122:10.

Perun S, Sobolewski AL, Domcke W. Photostability of 9H-adenine: mechanisms of the radiationless deactivation of the lowest excited singlet states. Chem Phys. 2005;313:107-112.

Perun S, Sobolewski AL, Domcke W. Ab initio studies on the radiationless decay mechanisms of the lowest excited singlet states of 9H-adenine. J Am Chem Soc. 2005;127:6257-6265.

Barbatti M, Lischka H. Nonadiabatic deactivation of 9H-adenine: a comprehensive picture based on mixed quantum-classical dynamics. J Am Chem Soc. 2008;130:6831-6839.

Plasser F, Crespo-Otero R, Pederzoli M, Pittner J, Lischka H, Barbatti M. Surface hopping dynamics with correlated single-reference methods: 9H-adenine as a case study. J Chem Theory Comput. 2014;10:1395-1405.

Rachofsky EL, Ross JBA, Krauss M, Osman R. CASSCF investigation of electronic excited states of 2-aminopurine. J Phys Chem A. 2001;105:190-197.

Reichardt C, Wen CW, Vogt RA, Crespo-Hernández CE. Role of intersystem crossing in the fluorescence quenching of 2-aminopurine 2′-deoxyriboside in solution. Photochem Photobiol Sci. 2013;12:1341-1350.

Barbatti M, Lischka H. Why water makes 2-aminopurine fluorescent? Phys Chem Chem Phys. 2015;17:15452-15459.

Perun S, Sobolewski AL, Domcke W. Ab initio studies of the photophysics of 2-aminopurine. Mol Phys. 2006;104:1113-1121.

Evans NL, Ullrich S. Wavelength dependence of electronic relaxation in isolated adenine using UV femtosecond time-resolved photoelectron spectroscopy. J Phys Chem A. 2010;114:11225-11230.

Szabla R, Gora RW, Janicki M, Sponer J. Photorelaxation of imidazole and adenine via electron-driven proton transfer along H2O wires. Faraday Discuss. 2016;195:237-251.

Gate G, Williams A, Haggmark MR, Svadlenak N, Hill G, de Vries MS. Nucleobases as molecular fossils of prebiotic photochemistry: excited-state dynamics of C2 and C6 substituted purines. In: Saija F, Cassone G, eds. Prebiotic Photochemistry: From Urey-Miller-Like Experiments to Recent Findings. The Royal Society of Chemistry; 2021:124-147.

Callahan MP, Smith KE, Cleaves HJ, et al. Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases. Proc Natl Acad Sci USA. 2011;108:13995-13998.

Miyakawa S, Cleaves HJ, Miller SL. The cold origin of life: B. Implications based on pyrimidines and purines produced from frozen ammonium cyanide solutions. Orig Life Evol Biosph. 2002;32:209-218.

Sleiman D, Garcia PS, Lagune M, et al. A third purine biosynthetic pathway encoded by aminoadenine-based viral DNA genomes. Science. 2021;372:516-520.

Zhou Y, Xu XX, Wei YF, et al. A widespread pathway for substitution of adenine by diaminopurine in phage genomes. Science. 2021;372:512-516.

Pezo V, Jaziri F, Bourguignon PY, et al. Noncanonical DNA polymerization by aminoadenine-based siphoviruses. Science. 2021;372:520-524.

Szabla R, Zdrowowicz M, Spisz P, et al. 2,6-diaminopurine promotes repair of DNA lesions under prebiotic conditions. Nat Commun. 2021;12:3018.

Gengeliczki Z, Callahan MP, Svadlenak N, et al. Effect of substituents on the excited-state dynamics of the modified DNA bases 2,4-diaminopyrimidine and 2,6-diaminopurine. Phys Chem Chem Phys. 2010;12:5375-5388.

Meijer G, de Vries MS, Hunziker HE, Wendt HR. Laser desorption jet-cooling of organic molecules. Cooling characteristics and detection sensitivity. Appl Phys B. 1990;51:395-403.

Siouri FM, Boldissar S, Berenbeim JA, de Vries MS. Excited state dynamics of 6-thioguanine. J Phys Chem A. 2017;121:5257-5266.

Grimme S, Goerigk L, Fink RF. Spin-component-scaled electron correlation methods. Wiley Interdiscip Rev Comput Mol Sci. 2012;2:886-906.

Hättig C. Structure optimizations for excited states with correlated second-order methods: CC2 and ADC(2). Adv Quantum Chem. 2005;50:37-60.

Tajti A, Tulipán L, Szalay PG. Accuracy of spin-component scaled ADC(2) excitation energies and potential energy surfaces. J Chem Theory Comput. 2020;16:468-474.

Kruse H, Szabla R, Sponer J. Surprisingly broad applicability of the cc-pVnZ-F12 basis set for ground and excited states. J Chem Phys. 2020;152:214104.

Levine BG, Coe JD, Martinez TJ. Optimizing conical intersections without derivative coupling vectors: application to multistate multireference second-order perturbation theory (MS-CASPT2). J Phys Chem B. 2008;112:405-413.

Szabla R, Gora RW, Sponer J. Ultrafast excited-state dynamics of isocytosine. Phys Chem Chem Phys. 2016;18:20208-20218.

Tuna D, Lefrancois D, Wolanski L, et al. Assessment of approximate coupled-cluster and algebraic-diagrammatic-construction methods for ground- and excited-state reaction paths and the conical-intersection seam of a retinal-chromophore model. J Chem Theory Comput. 2015;11:5758-5781.

Marsili E, Prlj A, Curchod BFE. Caveat when using ADC(2) for studying the photochemistry of carbonyl-containing molecules. Phys Chem Chem Phys. 2021;23:12945-12949.

Ahlrichs R, Bar M, Haser M, Horn H, Kolmel C. Electronic-structure calculations on workstation computers - the program system turbomole. Chem Phys Lett. 1989;162:165-169.

Dunning TH. Gaussian-basis sets for use in correlated molecular calculations. 1. The atoms boron through neon and hydrogen. J Chem Phys. 1989;90:1007-1023.

de Jong WA, Harrison RJ, Dixon DA. Parallel Douglas-Kroll energy and gradients in NWChem: estimating scalar relativistic effects using Douglas-Kroll contracted basis sets. J Chem Phys. 2001;114:48-53.

Aquilante F, Autschbach J, Carlson RK, et al. Molcas 8: new capabilities for multiconfigurational quantum chemical calculations across the periodic table. J Comput Chem. 2016;37:506-541.

Haggmark MR, Gate G, Boldissar S, Berenbeim J, Sobolewski AL, de Vries MS. Evidence for competing proton-transfer and hydrogen-transfer reactions in the S-1 state of indigo. Chem Phys. 2018;515:535-542.

Sobolewski AL, Domcke W, Dedonder-Lardeux C, Jouvet C. Excited-state hydrogen detachment and hydrogen transfer driven by repulsive (1)pi sigma* states: a new paradigm for nonradiative decay in aromatic biomolecules. Phys Chem Chem Phys. 2002;4:1093-1100.

Roberts GM, Stavros VG. The role of πσ* states in the photochemistry of heteroaromatic biomolecules and their subunits: insights from gas-phase femtosecond spectroscopy. Chem Sci. 2014;5:1698.

Dreuw A, Wormit M. The algebraic diagrammatic construction scheme for the polarization propagator for the calculation of excited states. Wiley Interdiscip Rev Comput Mol Sci. 2015;5:82-95.

Barbatti M, Aquino AJA, Szymczak JJ, Nachtigallova D, Hobza P, Lischka H. Relaxation mechanisms of UV-photoexcited DNA and RNA nucleobases. Proc Natl Acad Sci USA. 2010;107:21453-21458.

Oliveira LMF, Valverde D, Costa GJ, Borin AC. The copious photochemistry of 2,6-diaminopurine: luminescence, triplet population, and ground state recovery. Photochem Photobiol. 2023. doi:10.1111/php.13833

Schneider M, Hain T, Fischer I. Resonance-enhanced multiphoton ionisation of purine. ChemPhysChem. 2009;10:634-636.

Caminati W, Maccaferri G, Favero PG, Favero LB. Free jet absorption millimeter wave spectrum of purine. Chem Phys Lett. 1996;251:189-192.

Plützer C, Nir E, de Vries MS, Kleinermanns K. IR-UV double-resonance spectroscopy of the nucleobase adenine. Phys Chem Chem Phys. 2001;3:5466-5469.

Plützer C, Kleinermanns K. Tautomers and electronic states of jet-cooled adenine investigated by double resonance spectroscopy. Phys Chem Chem Phys. 2002;4:4877-4882.

Seefeld KA, Plützer C, Löwenich D, et al. Tautomers and electronic states of jet-cooled 2-aminopurine investigated by double resonance spectroscopy and theory. Phys Chem Chem Phys. 2005;7:3021-3026.

Lobsiger S, Sinha RK, Trachsel M, Leutwyler S. Low-lying excited states and nonradiative processes of the adenine analogues 7H-and 9H-2-aminopurine. J Chem Phys. 2011;134:114307.

Nachtigallova D, Barbatti M, Szymczak JJ, Hobza P, Lischka H. The photodynamics of 2,4-diaminopyrimidine in comparison with 4-aminopyrimidine: the effect of amino-substitution. Chem Phys Lett. 2010;497:129-134.

Kancheva P, Tuna D, Delchev VB. Comparative study of radiationless deactivation mechanisms in cytosine and 2,4-diaminopyrimidine. J Photochem Photobiol A. 2016;321:266-274.

Ismail N, Blancafort L, Olivucci M, Kohler B, Robb MA. Ultrafast decay of electronically excited singlet cytosine via π,π* to n π* state switch. J Am Chem Soc. 2002;124:6818-6819.

Gonzalez-Vazquez J, Gonzalez L, Samoylova E, Schultz T. Thymine relaxation after UV irradiation: the role of tautomerization and pi sigma* states. Phys Chem Chem Phys. 2009;11:3927-3934.

Busker M, Nispel M, Häber T, Kleinermanns K, Etinski M, Fleig T. Electronic and vibrational spectroscopy of 1-methylthymine and its water clusters: the dark state survives hydration. ChemPhysChem. 2008;9:1570-1577.

Etinski M, Fleig T, Marian C. Intersystem crossing and characterization of dark states in the pyrimidine nucleobases uracil, thymine, and 1-methylthymine. J Phys Chem A. 2009;113:11809-11816.

Santhosh C, Mishra PC. Electronic spectra of 2-aminopurine and 2,6 diaminopurine: phototautomerism and fluorescence reabsorption. Spectrochim Acta A. 1991;47:1685-1693.

Virta P, Koch A, Roslund MU, et al. Synthesis, characterisation and theoretical calculations of 2,6-diaminopurine etheno derivatives. Org Biomol Chem. 2005;3:2924-2929.

Majoube M, Millie P, Chinsky L, Turpin PY, Vergoten G. Resonance Raman-spectra for purine. J Mol Struct. 1995;355:147-158.

Borin AC, Serrano-Andres L, Fulscher MP, Roos BO. A theoretical study of the electronic spectra of N-9 and N-7 purine tautomers. J Phys Chem A. 1999;103:1838-1845.

Serrano-Andres L, Merchan M, Borin AC. Adenine and 2-aminopurine: paradigms of modern theoretical photochemistry. Proc Natl Acad Sci USA. 2006;103:8691-8696.

Gustavsson T, Sharonov A, Onidas D, Markovitsi D. Adenine, deoxyadenosine and deoxyadenosine 5'-monophosphate studied by femtosecond fluorescence upconversion spectroscopy. Chem Phys Lett. 2002;356:49-54.

Neely RK, Magennis SW, Dryden DTF, Jones AC. Evidence of tautomerism in 2-aminopurine from fluorescence lifetime measurements. J Phys Chem B. 2004;108:17606-17610.

Broo A. A theoretical investigation of the physical reason for the very different luminescence properties of the two isomers adenine and 2-aminopurine. J Phys Chem A. 1998;102:526-531.

Miannay FA, Gustavsson T, Banyasz A, Markovitsi D. Excited-state dynamics of dGMP measured by steady-state and femtosecond fluorescence spectroscopy. J Phys Chem A. 2010;114:3256-3263.

Karunakaran V, Kleinermanns K, Improta R, Kovalenko SA. Photoinduced dynamics of guanosine monophosphate in water from broad-band transient absorption spectroscopy and quantum-chemical calculations. J Am Chem Soc. 2009;131:5839-5850.

Barbatti M, Szymczak JJ, Aquino AJA, Nachtigallova D, Lischka H. The decay mechanism of photoexcited guanine - a nonadiabatic dynamics study. J Chem Phys. 2011;134. doi:10.1063/1.3521498

Marian CM. The guanine tautomer puzzle: quantum chemical investigation of ground and excited states. J Phys Chem A. 2007;111:1545-1553.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...