• This record comes from PubMed

A facile synthesis of precursor for the σ-1 receptor PET radioligand [18 F]FTC-146 and its radiofluorination

. 2024 Feb ; 67 (2) : 59-66. [epub] 20240103

Language English Country Great Britain, England Media print-electronic

Document type Journal Article

Grant support
A2_FPBT_2022_067 UCT Prague
A1_FPBT_2022_007 UCT Prague

The σ-1 receptor is a non-opioid transmembrane protein involved in various human pathologies including neurodegenerative diseases, inflammation, and cancer. The previously published ligand [18 F]FTC-146 is among the most promising tools for σ-1 molecular imaging by positron emission tomography (PET), with a potential for application in clinical diagnostics and research. However, the published six- or four-step synthesis of the tosyl ester precursor for its radiosynthesis is complicated and time-consuming. Herein, we present a simple one-step precursor synthesis followed by a one-step fluorine-18 labeling procedure that streamlines the preparation of [18 F]FTC-146. Instead of a tosyl-based precursor, we developed a one-step synthesis of the precursor analog AM-16 containing a chloride leaving group for the SN 2 reaction with 18 F-fluoride. 18 F-fluorination of AM-16 led to a moderate decay-corrected radiochemical yield (RCY = 7.5%) with molar activity (Am ) of 45.9 GBq/μmol. Further optimization of this procedure should enable routine radiopharmaceutical production of this promising PET tracer.

See more in PubMed

Kim FJ. Introduction to sigma proteins: evolution of the concept of sigma receptors. Handb Exp Pharmacol. 2017;244:1-11. doi:10.1007/164_2017_41

Brust P, Deuther-Conrad W, Lehmkuhl K, Jia H, Wünsch B. Molecular imaging of σ1 receptors in vivo: current status and perspectives. Curr Med Chem. 2014;21(1):35-69. doi:10.2174/09298673113209990214

Nguyen L, Lucke-Wold BP, Mookerjee S, Kaushal N, Matsumoto RR. Sigma-1 receptors and neurodegenerative diseases: towards a hypothesis of sigma-1 receptors as amplifiers of neurodegeneration and neuroprotection. Adv Exp Med Biol. 2017;964:133-152. doi:10.1007/978-3-319-50174-1_10

Agha H, McCurdy CR. In vitro and in vivo sigma 1 receptor imaging studies in different disease states. RSC Med Chem. 2021;12(2):154-177. doi:10.1039/d0md00186d

van Waarde A, Rybczynska AA, Ramakrishnan N, Ishiwata K, Elsinga PH, Dierckx RA. Sigma receptors in oncology: therapeutic and diagnostic applications of sigma ligands. Curr Pharm Des. 2010;16(31):3519-3537. doi:10.2174/138161210793563365

Kim FJ, Maher CM. Sigma1 pharmacology in the context of cancer. Handb Exp Pharmacol. 2017;244:237-308. doi:10.1007/164_2017_38

Cobos EJ, Entrena JM, Nieto FR, Cendan CM, del Pozo E. Pharmacology and therapeutic potential of sigma1 receptor ligands. Curr Neuropharmacol. 2008;6(4):344-366. doi:10.2174/157015908787386113

James ML, Shen B, Zavaleta CL, et al. New positron emission tomography (PET) radioligand for imaging σ-1 receptors in living subjects. J Med Chem. 2012;55(19):8272-8282. doi:10.1021/jm300371c

Yous S, Wallez V, Belloir M, Caignard DH, McCurdy CR, Poupaert JH. Novel 2(3H)-benzothiazolones as highly potent and selective sigma-1 receptor ligands. Med Chem Res. 2005;14(3):158-168. doi:10.1007/s00044-005-0131-1

Shen B, James ML, Andrews L, et al. Further validation to support clinical translation of [18F]FTC-146 for imaging sigma-1 receptors. EJNMMI Res. 2015;5(1):49. doi:10.1186/s13550-015-0122-2

Miller SC. Profiling sulfonate ester stability: identification of complementary protecting groups for sulfonates. J Org Chem. 2010;75(13):4632-4635. doi:10.1021/jo1007338

Collins J, Waldmann CM, Drake C, et al. Production of diverse PET probes with limited resources: 24 18F-labeled compounds prepared with a single radiosynthesizer. Proc Natl Acad Sci U S a. 2017;114(43):11309-11314. doi:10.1073/pnas.1710466114

Bratteby K, Shalgunov V, Battisti UM, et al. Insights into elution of anion exchange cartridges: opening the path toward aliphatic 18F-radiolabeling of base-sensitive tracers. ACS Pharmacol Transl Sci. 2021;4(5):1556-1566. doi:10.1021/acsptsci.1c00133

Sadeghzadeh M, Wenzel B, Nikodemus J, et al. Improved protocol for the radiosynthesis of [18F]FTC-146: a potent and selective sigma-1 receptor radioligand. J Labelled Comp Radiopharm. 2023;66(3):116-125. doi:10.1002/jlcr.4018

Pretze M, Flemming A, Kockerling M, Mamat C. Synthesis and Radiofluorination of iodophenyl esters as tool for the traceless Staudinger ligation. Z Naturforsch B. 2010;65(9):1128-1136. doi:10.1515/znb-2010-0912

Mamat C, Mosch B, Neuber C, Kockerling M, Bergmann R, Pietzsch J. Fluorine-18 radiolabeling and radiopharmacological characterization of a benzodioxolylpyrimidine-based radiotracer targeting the receptor tyrosine kinase ephB4. ChemMedChem. 2012;7(11):1991-2003. doi:10.1002/cmdc.201200264

Bourdier T, Shepherd R, Berghofer P, et al. Radiosynthesis and biological evaluation of L- and D-S-(3-[18F]Fluoropropyl)homocysteine for tumor imaging using positron emission tomography. J Med Chem. 2011;54(6):1860-1870. doi:10.1021/jm101513q

Qiao HW, Zhu L, Lieberman BP, Zha ZH, Plossl K, Kung HF. Synthesis and evaluation of novel tropane derivatives as potential PET imaging agents for the dopamine transporter. Bioorg Med Chem Lett. 2012;22(13):4303-4306. doi:10.1016/j.bmcl.2012.05.030

Chin FT, Morse CL, Shetty HU, Pike VW. Automated radiosynthesis of [18F]SPA-RQ for imaging human brain NK1 receptors with PET. J Label Compd Radiopharm. 2006;49(1):17-31. doi:10.1002/jlcr.1016

Szabo I, Czako G. Revealing a double-inversion mechanism for the F- + CH3Cl SN2 reaction. Nat Commun. 2015;6(1):5972. doi:10.1038/ncomms6972

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...