Cell Tree Rings: the structure of somatic evolution as a human aging timer
Jazyk angličtina Země Švýcarsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
38172489
PubMed Central
PMC11009167
DOI
10.1007/s11357-023-01053-4
PII: 10.1007/s11357-023-01053-4
Knihovny.cz E-zdroje
- Klíčová slova
- Biological age, Cell Tree Rings, Geroprotective trials,
- MeSH
- biologické markery MeSH
- dlouhověkost MeSH
- fylogeneze MeSH
- leukocyty mononukleární * MeSH
- lidé MeSH
- stárnutí * genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- biologické markery MeSH
Biological age is typically estimated using biomarkers whose states have been observed to correlate with chronological age. A persistent limitation of such aging clocks is that it is difficult to establish how the biomarker states are related to the mechanisms of aging. Somatic mutations could potentially form the basis for a more fundamental aging clock since the mutations are both markers and drivers of aging and have a natural timescale. Cell lineage trees inferred from these mutations reflect the somatic evolutionary process, and thus, it has been conjectured, the aging status of the body. Such a timer has been impractical thus far, however, because detection of somatic variants in single cells presents a significant technological challenge. Here, we show that somatic mutations detected using single-cell RNA sequencing (scRNA-seq) from thousands of cells can be used to construct a cell lineage tree whose structure correlates with chronological age. De novo single-nucleotide variants (SNVs) are detected in human peripheral blood mononuclear cells using a modified protocol. A default model based on penalized multiple regression of chronological age on 31 metrics characterizing the phylogenetic tree gives a Pearson correlation of 0.81 and a median absolute error of ~4 years between predicted and chronological ages. Testing of the model on a public scRNA-seq dataset yields a Pearson correlation of 0.85. In addition, cell tree age predictions are found to be better predictors of certain clinical biomarkers than chronological age alone, for instance glucose, albumin levels, and leukocyte count. The geometry of the cell lineage tree records the structure of somatic evolution in the individual and represents a new modality of aging timer. In addition to providing a numerical estimate of "cell tree age," it unveils a temporal history of the aging process, revealing how clonal structure evolves over life span. Cell Tree Rings complements existing aging clocks and may help reduce the current uncertainty in the assessment of geroprotective trials.
AgeCurve Limited Cambridge CB2 1SD UK
CEITEC Central European Institute of Technology Masaryk University 62500 Brno Czechia
Department of Experimental Biology Faculty of Science Masaryk University 62500 Brno Czechia
Doctoral School of Clinical Medicine University of Szeged Szeged H 6720 Hungary
HealthyLongevity clinic Inc 540 University Ave Palo Alto CA 94301 USA
Swinburne University of Technology Hawthorn VIC 3122 Australia
Zobrazit více v PubMed
Partridge L, Deelen J, Slagboom PE. Facing up to the global challenges of ageing. Nature. 2018;561(7721):45–56. doi: 10.1038/s41586-018-0457-8. PubMed DOI
Kaeberlein M. Translational geroscience: a new paradigm for 21st century medicine. Transl Med Aging. 2017;1:1–4. doi: 10.1016/j.tma.2017.09.004. PubMed DOI PMC
Rutledge J, Oh H, Wyss-Coray T. Measuring biological age using omics data. Nat Rev Genet. 2022;23:715–727. doi: 10.1038/s41576-022-00511-7. PubMed DOI PMC
Macdonald-Dunlop E, Taba N, Klarić L, Frkatović A, Walker R, Hayward C, Esko T, Haley C, Fischer K, Wilson JF, Joshi PK. A catalogue of omics biological ageing clocks reveals substantial commonality and associations with disease risk. Aging (Albany NY) 2022;14(2):623–659. doi: 10.18632/aging.203847. PubMed DOI PMC
López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. Hallmarks of aging: an expanding universe. Cell. 2023;186(2):243–278. doi: 10.1016/j.cell.2022.11.001. PubMed DOI
Evans MA, Walsh K. Clonal hematopoiesis, somatic mosaicism, and age-associated disease. Physiol Rev. 2023;103(1):649–716. doi: 10.1152/physrev.00004.2022. PubMed DOI PMC
Lodato MA, Rodin RE, Bohrson CL, Coulter ME, Barton AR, Kwon M, Sherman MA, Vitzthum CM, Luquette LJ, Yandava CN, Yang P, Chittenden TW, Hatem NE, Ryu SC, Woodworth MB, Park PJ, Walsh CA. Aging and neurodegeneration are associated with increased mutations in single human neurons. Science. 2018;359(6375):555–559. doi: 10.1126/science.aao4426. PubMed DOI PMC
Vijg J, Dong X. Pathogenic mechanisms of somatic mutation and genome mosaicism in aging. Cell. 2020;182(1):12–23. doi: 10.1016/j.cell.2020.06.024. PubMed DOI PMC
Massaar S, Sanders MA. The etiology of clonal mosaicism in human aging and disease. Aging and Cancer. 2023. 10.1002/aac2.12061
Szilard L. On the nature of the aging process. Proc Natl Acad Sci USA. 1959;45(1):30–45. doi: 10.1073/pnas.45.1.30. PubMed DOI PMC
Sankaran VG, Weissman JS, Zon LI. Cellular barcoding to decipher clonal dynamics in disease. Science. 2022;378(6616):eabm5874. doi: 10.1126/science.abm5874. PubMed DOI PMC
Salipante SJ, Horwitz MS. Phylogenetic fate mapping. Proc Natl Acad Sci USA. 2006;103(14):5448–5453. doi: 10.1073/pnas.0601265103. PubMed DOI PMC
Wasserstrom A, Frumkin D, Adar R, Itzkovitz S, Stern T, Kaplan S, Shefer G, Shur I, Zangi L, Reizel Y, Harmelin A, Dor Y, Dekel N, Reisner Y, Benayahu D, Tzahor E, Segal E, Shapiro E. Estimating cell depth from somatic mutations. PLoS Comput Biol. 2008;4(4):e1000058. doi: 10.1371/journal.pcbi.1000058. PubMed DOI PMC
Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 2016;14(8):e1002533. doi: 10.1371/journal.pbio.1002533. PubMed DOI PMC
Stadler T, Pybus OG, Stumpf MPH. Phylodynamics for cell biologists. Science. 2021;371(6526):eaah6266. doi: 10.1126/science.aah6266. PubMed DOI
Wilson GW, Derouet M, Darling GE, Yeung JC. scSNV: accurate dscRNA-seq SNV co-expression analysis using duplicate tag collapsing. Genome Biol. 2021;22(1):144. doi: 10.1186/s13059-021-02364-5. PubMed DOI PMC
Shen W, Le S, Li Y, Hu F. SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PloS One. 2016;11(10):e0163962. doi: 10.1371/journal.pone.0163962. PubMed DOI PMC
Schliep KP. phangorn: phylogenetic analysis in R. Bioinformatics. 2011;27(4):592–593. doi: 10.1093/bioinformatics/btq706. PubMed DOI PMC
Hicks DG, Speed TP, Yassin M, Russell SM. Maps of variability in cell lineage trees. PLoS Comput Biol. 2019;15(2):e1006745. doi: 10.1371/journal.pcbi.1006745. PubMed DOI PMC
Lewitus E, Morlon H. Characterizing and comparing phylogenies from their Laplacian spectrum. Syst Biol. 2016;65(3):495–507. doi: 10.1093/sysbio/syv116. PubMed DOI
Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, Klotzle B, Bibikova M, Fan J-B, Gao Y, Deconde R, Chen M, Rajapakse I, Friend S, Ideker T, Zhang K. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell. 2013;49(2):359–367. doi: 10.1016/j.molcel.2012.10.016. PubMed DOI PMC
Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14(10):3156. doi: 10.1186/gb-2013-14-10-r115. PubMed DOI PMC
Levine ME, Lu AT, Quach A, Chen BH, Assimes TL, Bandinelli S, Hou L, Baccarelli AA, Stewart JD, Li Y, Whitsel EA, Wilson JG, Reiner AP, Aviv A, Lohman K, Liu Y, Ferrucci L, Horvath S. An epigenetic biomarker of aging for lifespan and healthspan. Aging. 2018;10(4):573–591. doi: 10.18632/aging.101414. PubMed DOI PMC
Zou H, Hastie T. Regularization and variable selection via the elastic net. J R Stat Soc Series B Stat Methodology. 2005;67(2):301–320. doi: 10.1111/j.1467-9868.2005.00503.x. DOI
Hastie T, Tibshirani R, Wainwright M. Statistical learning with sparsity: the lasso and generalizations. CRC Press; 2015.
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E. Scikit-learn: machine learning in Python. J Mach Learn Res. 2011;12:2825–2830.
Van Rossum G, Drake FL. Python 3 reference manual. Scotts Valley, CA: CreateSpace; 2009.
Varma S, Simon R. Bias in error estimation when using cross-validation for model selection. BMC Bioinform. 2006;7(1):91. doi: 10.1186/1471-2105-7-91. PubMed DOI PMC
Cawley GC, Talbot NL. On over-fitting in model selection and subsequent selection bias in performance evaluation. J Mach Learn Res. 2010;11:2079–2107.
Doherty T, Dempster E, Hannon E, Mill J, Poulton R, Corcoran D, Sugden K, Williams B, Caspi A, Moffitt TE, Delany SJ, Murphy TM. A comparison of feature selection methodologies and learning algorithms in the development of a DNA methylation-based telomere length estimator. BMC Bioinform. 2023;24(1):178. doi: 10.1186/s12859-023-05282-4. PubMed DOI PMC
Zou H. The adaptive lasso and its oracle properties. J Am Stat Assoc. 2006;101(476):1418–1429. doi: 10.1198/016214506000000735. DOI
Zou H, Zhang HH. On the adaptive elastic-net with a diverging number of parameters. The Annals of Statistics. 2009;37(4):1733–1751. doi: 10.1214/08-AOS625. PubMed DOI PMC
Berk R, Brown L, Buja A, Zhang K, Zhao L. Valid post-selection inference. The Annals of Statistics. 2013;41(2):802–837. doi: 10.1214/12-AOS1077. DOI
Kammer M, Dunkler D, Michiels S, Heinze G. Evaluating methods for lasso selective inference in biomedical research: a comparative simulation study. BMC Med Res Methodol. 2022;22(1):206. doi: 10.1186/s12874-022-01681-y. PubMed DOI PMC
Lähnemann D, Köster J, Szczurek E, McCarthy DJ, Hicks SC, Robinson MD, Vallejos CA, Campbell KR, Beerenwinkel N, Mahfouz A, Pinello L, Skums P, Stamatakis A, Attolini CS, Aparicio S, Baaijens J, Balvert M, Barbanson B, Cappuccio A, Corleone G, Dutilh BE, Florescu M, Guryev V, Holmer R, Jahn K, Lobo TJ, Keizer EM, Khatri I, Kielbasa SM, Korbel JO, Kozlov AM, Kuo TH, Lelieveldt BPF, Mandoiu II, Marioni JC, Marschall T, Mölder F, Niknejad A, Raczkowski L, Reinders M, Ridder J, Saliba AE, Somarakis A, Stegle O, Theis FJ, Yang H, Zelikovsky A, McHardy AC, Raphael BJ, Shah SP, Schönhuth A. Eleven grand challenges in single-cell data science. Genome Biol. 2020;21(1):31. doi: 10.1186/s13059-020-1926-6. PubMed DOI PMC
Mitchell E, Spencer Chapman M, Williams N, Dawson KJ, Mende N, Calderbank EF, Jung H, Mitchell T, Coorens THH, Spencer DH, Machado H, Lee-Six H, Davies M, Hayler D, Fabre MA, Mahbubani K, Abascal F, Cagan A, Vassiliou GS, Baxter J, Martincorena I, Stratton MR, Kent DG, Chatterjee K, Parsy KS, Green AR, Nangalia J, Laurenti E, Campbell PJ. Clonal dynamics of haematopoiesis across the human lifespan. Nature. 2022;606(7913):343–350. doi: 10.1038/s41586-022-04786-y. PubMed DOI PMC
Lewinsohn MA, Bedford T, Müller NF, Feder AF. State-dependent evolutionary models reveal modes of solid tumour growth. Nat Ecol Evol. 2023;7(4):581–596. doi: 10.1038/s41559-023-02000-4. PubMed DOI PMC
Bizzotto S, Dou Y, Ganz J, Doan RN, Kwon M, Bohrson CL, Kim SN, Bae T, Abyzov A, Brain Somatic Mosaicism Network NIMH, Park PJ, Walsh CA. Landmarks of human embryonic development inscribed in somatic mutations. Science. 2021;371(6535):1249–1253. doi: 10.1126/science.abe1544. PubMed DOI PMC
Fasching L, Jang Y, Tomasi S, Schreiner J, Tomasini L, Brady MV, Bae T, Sarangi V, Vasmatzis N, Wang Y, Szekely A, Fernandez TV, Leckman JF, Abyzov A, Vaccarino FM. Early developmental asymmetries in cell lineage trees in living individuals. Science. 2021;371(6535):1245–1248. doi: 10.1126/science.abe0981. PubMed DOI PMC
Marongiu F, DeGregori J. The sculpting of somatic mutational landscapes by evolutionary forces and their impacts on aging-related disease. Mol Oncol. 2022;16(18):3238–3258. doi: 10.1002/1878-0261.13275. PubMed DOI PMC
Gabbutt C, Schenck RO, Weisenberger DJ, Kimberley C, Berner A, Househam J, Lakatos E, Robertson-Tessi M, Martin I, Patel R, Clark SK, Latchford A, Barnes CP, Leedham SJ, Anderson ARA, Graham TA, Shibata D. Fluctuating methylation clocks for cell lineage tracing at high temporal resolution in human tissues. Nat Biotechnol. 2022;40(5):720–730. doi: 10.1038/s41587-021-01109-w. PubMed DOI PMC
Higgins-Chen AT, Thrush KL, Wang Y, Minteer CJ, Kuo PL, Wang M, Niimi P, Sturm G, Lin J, Moore AZ, Bandinelli S, Vinkers CH, Vermetten E, Rutten BPF, Geuze E, Okhuijsen-Pfeifer C, van der Horst MZ, Schreiter S, Gutwinski S, Luykx JJ, Picard M, Ferrucci L, Crimmins EM, Boks MP, Hägg S, Hu-Seliger TT, Levine ME. A computational solution for bolstering reliability of epigenetic clocks: implications for clinical trials and longitudinal tracking. Nat Aging. 2022;2(7):644–661. doi: 10.1038/s43587-022-00248-2. PubMed DOI PMC