• This record comes from PubMed

Newly isolated Brevundimonas naejangsanensis as a biocontrol agent against Fusarium redolens the causal of Fusarium yellows of chickpea

. 2024 Aug ; 69 (4) : 835-846. [epub] 20240104

Language English Country United States Media print-electronic

Document type Journal Article

Links

PubMed 38175463
DOI 10.1007/s12223-023-01126-z
PII: 10.1007/s12223-023-01126-z
Knihovny.cz E-resources

Three endophytic bacteria, namely BvV, BvP and BvL, were newly isolated from the root nodules of bean, pea and lentil plants respectively cultivated in Mascara the northwest of Algeria, and identified by 16S ribosomal RNA gene sequencing as Brevundimonas naejangsanensis. These strains were able to produce hydrolytic enzymes and hydrogen cyanide. All strains produced a growth-promoting hormone, indole acetic acid, varying in concentration from 83.2 to 171.7 µg/mL. The phosphate solubilizing activity of BvV, BvP and BvL varied from 25.5 to 42.02 µg/mL for tricalcium phosphate. The three antagonistic Brevundimonas spp. showed in vitro the most inhibitory effect on mycelial growth of Fusarium redolens FRC (from 78.33 to 85.55%). Strain BvV, BvP and BvL produced also volatile metabolites which inhibited mycelial FRC growth up to 39.2%. All strains showed significant disease reduction in pot experiments. Chickpea Fusarium yellows severity caused by FRC was reduced significantly from 89.3 to 96.6% in the susceptible cultivar ILC 482 treated with antagonistic B. naejangsanensis. The maximum stimulatory effect on chickpea plants growth was observed by inoculation of strain BvV. This treatment resulted in a 7.40-26.21% increase in shoot height as compared to the control plants. It is concluded that the endophytic bacterial strains of B. naejangsanensis having different plant growth promoting (PGP) activities can be considered as beneficial microbes for sustainable agriculture. To our knowledge, this is the first report to use B. naejangsanensis strains as a new biocontrol agent against F. redolens, a new pathogen of chickpea plants causing Fusarium yellows disease in Algeria.

See more in PubMed

Abe C, Faria C, De Castro F, De Souza S, Santos F, Da Silva C et al (2015) Fungi isolated from maize (Zea mays L.) grains and production of associated enzyme activities. IJMS 16:15328–15346. https://doi.org/10.3390/ijms160715328 PubMed DOI

Abraham WR, Strömpl C, Meyer H, Lindholst S, Moore ER, Christ R, Vancanneyt M, Tindall BJ, Bennasar A et al (1999) Phylogeny and polyphasic taxonomy of Caulobacter species. Proposal of Maricaulis gen. nov. with Maricaulis maris (Poindexter) comb. nov. as the type species, and emended description of the genera Brevundirnonas and Caulobacter. Int J Syst Evol Bacteriol 49(3):1053–1073. https://doi.org/10.1099/00207713-49-3-1053

Ainsworth GC, Bisby GR, Kirk PM, CABI Bioscience (2008) Ainsworth & Bisby’s dictionary of the fungi, 10th ed. CABI Wallingford, Oxon, UK. ISBN: 978-0-85199-826-8

Ali E, Ibrahim G (2023) Biological control for some insects by using plant growth promoting bacteria in laboratory and field conditions. J Plant Prot Pathol 14(6):153–164. https://doi.org/10.21608/jppp.2023.204453.1140

Aoki T, O’Donnell K, Geiser DM (2014) Systematics of key phytopathogenic Fusarium species: current status and future challenges. J Gen Plant Pathol 80:189–201. https://doi.org/10.1007/s10327-014-0509-3 DOI

Apun K, Jong BC, Salleh MA (2000) Screening and isolation of a cellulolytic and amylolytic Bacillus from sago pith waste. J Gen Appl Microbiol 46:263–267. https://doi.org/10.2323/jgam.46.263 PubMed DOI

Ashour WE, Abd El Aty AA, Hamed ER, Swelim MA, El-Diwany AI (2016) Applications of Plackett–Burman and central composite design for the optimization of novel Brevundimonas diminuta KT277492 chitinase production, investigation of its antifungal activity. Braz Arch Biol Technol 59. https://doi.org/10.1590/1678-4324-2016160245

Baayen RP, O’Donnell K, Bonants PJM et al (2000a) Gene genealogies and AFLP analyses in the Fusarium oxysporum complex identify monophyletic and nonmonophyletic formae speciales causing wilt and rot disease. Phytopathology 90:891–900. https://doi.org/10.1094/PHYTO.2000.90.8.891 PubMed DOI

Baayen RP, van den Boogert P, Bonants P et al (2000b) Fusarium redolens f. sp. asparagi, causal agent of asparagus root rot, crown rot and spear rot. Eur J Plant Pathol 106:907–912. https://doi.org/10.1023/A:1008766707266 DOI

Baayen RP, van Dreven F, Krijger MC, Waalwijk C (1997) Genetic diversity in Fusarium oxysporum f. sp. dianthi and Fusarium redolens f. sp. dianthi. Eur J Plant Pathol 103:395–408. https://doi.org/10.1023/A:1008604416107 DOI

Bekkar AA (2015) Pouvoir antagoniste et mode d’action du Trichoderma vis-à-vis de quelques champignons phytopathogènes. Dissertation, Université Mustapha Stambouli de Mascara, Algeria

Bekkar AA, Belabid L, Zaim S (2016) Biocontrol of phytopathogenic Fusarium spp. by antagonistic Trichoderma. Biopestic Int 12(1): 37–45

Bekkar AA, Zaim S, Belabid L (2018) Induction of systemic resistance in chickpea against Fusarium wilt by Bacillus strains. Arch Phytopathol Pflanzenschutz 51:70–80. https://doi.org/10.1080/03235408.2018.1438819

Beneduzi A, Ambrosini A, Passaglia LMP (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol 35:1044–1051. https://doi.org/10.1590/S1415-47572012000600020 PubMed DOI PMC

Berg G, Roskot N, Steidle A et al (2002) Plant-dependent genotypic and phenotypic diversity of antagonistic rhizobacteria isolated from different Verticillium host plants. Appl Environ Microbiol 68:3328–3338. https://doi.org/10.1128/AEM.68.7.3328-3338.2002 PubMed DOI PMC

Bouhadida M, Jendoubi W, Gargouri S et al (2017) First report of Fusarium redolens causing Fusarium yellowing and wilt of chickpea in Tunisia. Plant Dis 101:1038–1038. https://doi.org/10.1094/PDIS-08-16-1114-PDN DOI

Cattelan AJ, Hartel PG, Fuhrmann JJ (1999) Screening for plant growth–promoting rhizobacteria to promote early soybean growth. Soil Sci Soc of Amer J 63:1670–1680. https://doi.org/10.2136/sssaj1999.6361670x

Cheng D, Tian Z, Feng L et al (2019) Diversity analysis of the rhizospheric and endophytic bacterial communities of Senecio vulgaris L. (Asteraceae) in an invasive range. PeerJ 6:e6162. https://doi.org/10.7717/peerj.6162

Edi-Premono M, Moawad AM, Vlek PL (1996) Effect of phosphate-solubilizing Pseudomonas putida on the growth of maize and its survival in the rhizosphere. Indones J Crop Sci 11:13–23

Fiddaman PJ, Rossall S (1995) Selection of bacterial antagonists for the biological control of Rhizoctonia solani in oilseed rape (Brassica napus). Plant Pathol 44:695–703. https://doi.org/10.1111/j.1365-3059.1995.tb01693.x DOI

Garrity GM, Bell JA, Lilburn TG (2004) Taxonomic outline of the prokaryotes. Bergey's manual of systematic bacteriology, 2nd Edition. Springer, New York, Berlin, Heidelberg, p 399

Glickmann E, Dessaux Y (1995) A critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl Environ Microbiol 61:793–796. https://doi.org/10.1128/aem.61.2.793-796.1995 PubMed DOI PMC

Guo D-J, Singh P, Yang B et al (2023) Complete genome analysis of sugarcane root associated endophytic diazotroph Pseudomonas aeruginosa DJ06 revealing versatile molecular mechanism involved in sugarcane development. Front Microbiol 14:1096754. https://doi.org/10.3389/fmicb.2023.1096754 PubMed DOI PMC

Husna A, Zakaria L, Mohamed Nor NMI (2021) Fusarium commune associated with wilt and root rot disease in rice. Plant Pathol 70:123–132. https://doi.org/10.1111/ppa.13270 DOI

Jamali S (2017) First report of identification and molecular characterization of Tuber aestivum in Iran. Agroforest Syst 91:335–343. https://doi.org/10.1007/s10457-016-9932-0 DOI

Jiménez-Fernández D, Navas-Cortés JA, Montes-Borrego M et al (2011) Molecular and pathogenic characterization of Fusarium redolens, a new causal agent of Fusarium yellows in chickpea. Plant Dis 95:860–870. https://doi.org/10.1094/PDIS-12-10-0946 PubMed DOI

Kang SJ, Choi NS, Choi JH, Lee JS, Yoon JH, Song JJ (2009) Brevundimonas naejangsanensis sp. nov., a proteolytic bacterium isolated from soil, and reclassification of Mycoplana bullata into the genus Brevundimonas as Brevundimonas bullata comb. nov. Int J Syst Evol Microbiol 59:3155–3160. https://doi.org/10.1099/ijs.0.011700-0 PubMed DOI

Kaur N, Sharma P, Sharma S (2015) Co-inoculation of Mesorhizobium sp. and plant growth promoting rhizobacteria Pseudomonas sp. as bio-enhancer and bio-fertilizer in chickpea (Cicer arietinum L.). Legum Res 38:367. https://doi.org/10.5958/0976-0571.2015.00099.5

Kumar S, Stecher G, Li M et al (2018) MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096 PubMed DOI PMC

Kumar V, Gera R (2014) Isolation of a multi-trait plant growth promoting Brevundimonas sp. and its effect on the growth of Bt-cotton. 3 Biotech 4:97–101. https://doi.org/10.1007/s13205-013-0126-4

Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematic. John Wiley and Sons, New York, pp 115–175

Lee YW, Lee KH, Lee SY, Im W-T (2020) Brevundimonas fluminis sp. nov., isolated from a river. Int J Syst Evol Microbiol 70:204–210. https://doi.org/10.1099/ijsem.0.003736 PubMed DOI

Li JH, Wang ET, Chen WF, Chen WX (2008) Genetic diversity and potential for promotion of plant growth detected in nodule endophytic bacteria of soybean grown in Heilongjiang province of China. Soil Biol Biochem 40:238–246. https://doi.org/10.1016/j.soilbio.2007.08.014 DOI

Liaqat F, Eltem R (2016) Identification and characterization of endophytic bacteria isolated from in vitro cultures of peach and pear rootstocks. 3 Biotech 6:120. https://doi.org/10.1007/s13205-016-0442-6

Lorck H (1948) Production of hydrocyanic acid by bacteria. Physiol Plant 1:142–146. https://doi.org/10.1111/j.1399-3054.1948.tb07118.x DOI

Manasa M, Ravinder P, Gopalakrishnan S et al (2021) Co-inoculation of Bacillus spp. for growth promotion and iron fortification in sorghum. Sustainability 13:12091. https://doi.org/10.3390/su132112091

Menéndez E, Pérez-Yepes J, Carro L et al (2017) Brevundimonas canariensis sp. nov., isolated from roots of Triticum aestivum. Int J Syst Evol Microbiol 67:969–973. https://doi.org/10.1099/ijsem.0.001725 PubMed DOI

Naqqash T, Imran A, Hameed S et al (2020) First report of diazotrophic Brevundimonas spp. as growth enhancer and root colonizer of potato. Sci Rep 10:12893. https://doi.org/10.1038/s41598-020-69782-6

Park Y, Je K-W, Lee K et al (2008) Growth promotion of Chlorella ellipsoidea by co-inoculation with Brevundimonas sp. isolated from the microalga. Hydrobiologia 598:219–228. https://doi.org/10.1007/s10750-007-9152-8 DOI

Pastore M, Sforza E (2018) Exploiting symbiotic interactions between Chlorella protothecoides and Brevundimonas diminuta for an efficient single-step urban wastewater treatment. Water Sci Technol 78:216–224. https://doi.org/10.2166/wst.2018.155 PubMed DOI

Peng M, Zhang Z, Xu X et al (2023) Purification and characterization of the enzymes from Brevundimonas naejangsanensis that degrade ochratoxin A and B. Food Chem 419:135926. https://doi.org/10.1016/j.foodchem.2023.135926 PubMed DOI

Pérez-Hernández Y, Diaz-Solares M, Rondon-Castillo AJ et al (2020) Isolation of Bacillus spp. strains with potentialities for agricultural and industrial development, from the bioproduct IHPLUS

Pikovskaya RI (1948) Mobilization of phosphorus in soil in connection with the vital activity of some microbial species. Microbiology 17:362–370

Poszytek K, Karczewska-Golec J, Dziurzynski M et al (2019) Genome-wide and functional view of proteolytic and lipolytic bacteria for efficient biogas production through enhanced sewage sludge hydrolysis. Molecules 24(14):2624. https://doi.org/10.3390/molecules24142624 PubMed DOI PMC

Rana A, Saharan B, Joshi M et al (2011) Identification of multi-trait PGPR isolates and evaluating their potential as inoculants for wheat. Ann Microbiol 61:893–900. https://doi.org/10.1007/s13213-011-0211-z DOI

Rathi M, Yogalakshmi KN (2021) Brevundimonas diminuta MYS6 associated Helianthus annuus L. for enhanced copper phytoremediation. Chemosphere 263:128195. https://doi.org/10.1016/j.chemosphere.2020.128195

Renwick A, Campbell R, Coe S (1991) Assessment of in vivo screening systems for potential biocontrol agents of Gaeumannomyces graminis. Plant Pathol 40:524–532. https://doi.org/10.1111/j.1365-3059.1991.tb02415.x DOI

Ryan MP, Pembroke JT (2018) Brevundimonas spp: emerging global opportunistic pathogens. Virulence 9:480–493. https://doi.org/10.1080/21505594.2017.1419116 PubMed DOI PMC

Saeedi S, Jamali S (2021) Molecular characterization and distribution of Fusarium isolates from uncultivated soils and chickpea plants in Iran with special reference to Fusarium redolens. J Plant Pathol 103:167–183. https://doi.org/10.1007/s42161-020-00698-w DOI

Sagar A, Dhusiya K, Shukla PK et al (2018) Comparative analysis of production of hydrogen cyanide with production of siderophore and phosphate solubilization activity in plant growth promoting bacteria. Vegetos 31:130. https://doi.org/10.5958/2229-4473.2018.00064.2

Shao L, Liu K, Li Z, Zhang Z, Zhao W, Yao L et al (2015) Screening, identification and application of the strain Y-P22 producing cytokinins in phyllosphere of tobacco. J Shandong Agric Univ (Natural Science) 46:194–197

Segers P, Vancanneyt M, Pot B et al (1994) Classification of Pseudomonas diminuta Leifson and Hugh 1954 and Pseudomonas vesicularis Busing, Doll, and Freytag 1953 in Brevundimonas gen. nov. as Brevundimonas diminuta comb. nov. and Brevundimonas vesicularis comb. nov., respectively. Int J Syst Bacteriol 44:499–510. https://doi.org/10.1099/00207713-44-3-499 PubMed DOI

Sharma P, Chaturvedi P, Chandra R, Kumar S (2022) Identification of heavy metals tolerant Brevundimonas sp. from rhizospheric zone of Saccharum munja L. and their efficacy in in-situ phytoremediation. Chemosphere 295:133823. https://doi.org/10.1016/j.chemosphere.2022.133823

Singh C, Vyas D (2023) Use of Ganoderma lucidum extract to elevate the resistance in chickpea against the Fusarium oxysporum f. sp. ciceris. Arch Phytopathol Pflanzenschutz 56(8):605–624. https://doi.org/10.1080/03235408.2023.2207955

Singh N, Marwa N, Mishra SK et al (2016) Brevundimonas diminuta mediated alleviation of arsenic toxicity and plant growth promotion in Oryza sativa L. Ecotoxicol Environ Saf 125:25–34. https://doi.org/10.1016/j.ecoenv.2015.11.020 PubMed DOI

Singh PP, Shin YC, Park CS, Chung YR (1999) Biological control of Fusarium wilt of cucumber by chitinolytic bacteria. Phytopathology 89:92–99. https://doi.org/10.1094/PHYTO.1999.89.1.92 PubMed DOI

Soto J, Charles TC, Lynch MDJ et al (2021) Genome sequence of Brevundimonas sp., an arsenic resistant soil bacterium. Diversity 13:344. https://doi.org/10.3390/d13080344

Su H, Zhang T, Bao M et al (2014) Genome sequence of a promising hydrogen-producing facultative anaerobic bacterium, Brevundimonas naejangsanensis strain B1. Genome Announc 2:e00542–e614. https://doi.org/10.1128/genomeA.00542-14

Sun Z, Yang L, Zhang L, Han M (2018) An investigation of Panax ginseng Meyer growth promotion and the biocontrol potential of antagonistic bacteria against ginseng black spot. J Ginseng Res 42:304–311. https://doi.org/10.1016/j.jgr.2017.03.012 PubMed DOI

Syed A, Zeyad MT, Shahid M et al (2021) Heavy metals induced modulations in growth, physiology, cellular viability, and biofilm formation of an identified bacterial isolate. ACS Omega 6:25076–25088. https://doi.org/10.1021/acsomega.1c04396 PubMed DOI PMC

Tekeoğlu M, Özkilinç H, Tunali B et al (2017) Molecular identification of Fusarium spp. causing wilt of chickpea and the first report of Fusarium redolens in Turkey. Mediterr Agric Sci 30(1):27–33

Tonelli ML, Furlan A, Taurian T et al (2011) Peanut priming induced by biocontrol agents. Physiol Mol Plant Pathol 75:100–105. https://doi.org/10.1016/j.pmpp.2010.11.001 DOI

Vincent JM (1970) A manual for the practical study of the root-nodule bacteria. International biological program handbook no. 15. Blackwell Scientific Publishers, Oxford, p 164. https://doi.org/10.1002/jobm.19720120524

Wang J, Zhao S, Xu S et al (2023) Co-inoculation of antagonistic Bacillus velezensis FH-1 and Brevundimonas diminuta NYM3 promotes rice growth by regulating the structure and nitrification function of rhizosphere microbiome. Front Microbiol 14:1101773. https://doi.org/10.3389/fmicb.2023.1101773 PubMed DOI PMC

Zaim S (2016) Essai de lutte biologique contre le Fusarium oxysporum f. sp. ciceris à l’aide des microorganismes de la rhizosphère de la culture du pois chiche. Dissertation, Université Abdelhamid Ibn Badis de Mostaganem, Algeria

Zaim S, Bekkar AA (2022) First report of Fusarium redolens causing Fusarium yellows on chickpea in Algeria. J Plant Pathol 104:835–835. https://doi.org/10.1007/s42161-022-01044-y DOI

Zaim S, Bekkar AA (2023) Advances in research on the use of Brevundimonas spp. to improve crop and soil fertility and for soil bioremediation. Alger J Biosciences 4:045–051. https://doi.org/10.57056/ajb.v4i1.109

Zaim S, Bekkar AA, Belabid L (2017) Rhizobium as a crop enhancer and biofertilizer for increased non-legume production. In: Hansen AP, Choudhary DK, Agrawal PK, Varma A (eds) Rhizobium biology and biotechnology. Springer International Publishing, Cham, pp 25–37

Zaim S, Bekkar AA, Belabid L (2018) Efficacy of Bacillus subtilis and Trichoderma harzianum combination on chickpea Fusarium wilt caused by F. oxysporum f. sp. ciceris. Arch Phytopathol Pflanzenschutz 51:217–226. https://doi.org/10.1080/03235408.2018.1447896

Zaim S, Belabid L, Bellahcene M (2013) Biocontrol of chickpea Fusarium wilt by Bacillus spp. rhizobacteria. J Plant Prot Res 53:177–183. https://doi.org/10.2478/jppr-2013-0027 DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...