• This record comes from PubMed

Shank3 Deficiency Results in a Reduction in GABAergic Postsynaptic Puncta in the Olfactory Brain Areas

. 2024 Apr ; 49 (4) : 1008-1016. [epub] 20240106

Language English Country United States Media print-electronic

Document type Journal Article

Links

PubMed 38183586
PubMed Central PMC10902016
DOI 10.1007/s11064-023-04097-2
PII: 10.1007/s11064-023-04097-2
Knihovny.cz E-resources

Dysfunctional sensory systems, including altered olfactory function, have recently been reported in patients with autism spectrum disorder (ASD). Disturbances in olfactory processing can potentially result from gamma-aminobutyric acid (GABA)ergic synaptic abnormalities. The specific molecular mechanism by which GABAergic transmission affects the olfactory system in ASD remains unclear. Therefore, the present study aimed to evaluate selected components of the GABAergic system in olfactory brain regions and primary olfactory neurons isolated from Shank3-deficient (-/-) mice, which are known for their autism-like behavioral phenotype. Shank3 deficiency led to a significant reduction in GEPHYRIN/GABAAR colocalization in the piriform cortex and in primary neurons isolated from the olfactory bulb, while no change of cell morphology was observed. Gene expression analysis revealed a significant reduction in the mRNA levels of GABA transporter 1 in the olfactory bulb and Collybistin in the frontal cortex of the Shank3-/- mice compared to WT mice. A similar trend of reduction was observed in the expression of Somatostatin in the frontal cortex of Shank3-/- mice. The analysis of the expression of other GABAergic neurotransmission markers did not yield statistically significant results. Overall, it appears that Shank3 deficiency leads to changes in GABAergic synapses in the brain regions that are important for olfactory information processing, which may represent basis for understanding functional impairments in autism.

See more in PubMed

Sweigert JR, St John T, Begay KK, Davis GE, Munson J, Shankland E, Estes A, Dager SR, Kleinhans NM. Characterizing olfactory function in children with Autism Spectrum disorder and children with sensory Processing Dysfunction. Brain Sci. 2020;10(6):362. doi: 10.3390/brainsci10060362. PubMed DOI PMC

Boudjarane MA, Grandgeorge M, Marianowski R, Misery L, Lemonnier É. Perception of odors and tastes in autism spectrum disorders: a systematic review of assessments. Autism Res. 2017;10(6):1045–1057. doi: 10.1002/aur.1760. PubMed DOI

Geramita MA, Wen JA, Rannals MD, Urban NN. Decreased amplitude and reliability of odor-evoked responses in two mouse models of autism. J Neurophysiol. 2020;123(4):1283–1294. doi: 10.1152/jn.00277.2019. PubMed DOI PMC

McClard CK, Kochukov MY, Herman I, Liu Z, Eblimit A, Moayedi Y, Ortiz-Guzman J, Colchado D, Pekarek B, Panneerselvam S, Mardon G, Arenkiel BR. POU6f1 mediates neuropeptide-dependent plasticity in the adult brain. J Neurosci. 2018;38(6):1443–1461. doi: 10.1523/JNEUROSCI.1641-17.2017. PubMed DOI PMC

Boesveldt S, Parma V. The importance of the olfactory system in human well-being, through nutrition and social behavior. Cell Tissue Res. 2021;383(1):559–567. doi: 10.1007/s00441-020-03367-7. PubMed DOI PMC

Gottfried JA. Central mechanisms of odour object perception. Nat Rev Neurosci. 2010;11(9):628–641. doi: 10.1038/nrn2883. PubMed DOI PMC

Zhou G, Lane G, Cooper SL, Kahnt T, Zelano C. Characterizing functional pathways of the human olfactory system. Elife. 2019;8:e47177. doi: 10.7554/eLife.47177. PubMed DOI PMC

Chen Y, Chen X, Baserdem B, Zhan H, Li Y, Davis MB, Kebschull JM, Zador AM, Koulakov AA, Albeanu DF. High-throughput sequencing of single neuron projections reveals spatial organization in the olfactory cortex. Cell. 2022;185(22):4117–4134e28. doi: 10.1016/j.cell.2022.09.038. PubMed DOI PMC

Imamura F, Ito A, LaFever BJ. Subpopulations of projection neurons in the olfactory bulb. Front Neural Circuits. 2020;14:561822. doi: 10.3389/fncir.2020.561822. PubMed DOI PMC

Huang L, Ung K, Garcia I, Quast KB, Cordiner K, Saggau P, Arenkiel BR. Task Learning promotes plasticity of Interneuron Connectivity Maps in the olfactory bulb. J Neurosci. 2016;36(34):8856–8871. doi: 10.1523/JNEUROSCI.0794-16.2016. PubMed DOI PMC

Brunert D, Rothermel M. Extrinsic neuromodulation in the rodent olfactory bulb. Cell Tissue Res. 2021;383(1):507–524. doi: 10.1007/s00441-020-03365-9. PubMed DOI PMC

Tepe B, Hill MC, Pekarek BT, Hunt PJ, Martin TJ, Martin JF, Arenkiel BR. Single-cell RNA-Seq of mouse olfactory bulb reveals Cellular Heterogeneity and Activity-Dependent Molecular Census of Adult-born neurons. Cell Rep. 2018;25(10):2689–2703e3. doi: 10.1016/j.celrep.2018.11.034. PubMed DOI PMC

Villar PS, Hu R, Araneda RC. Long-range GABAergic inhibition modulates Spatiotemporal Dynamics of the output neurons in the olfactory bulb. J Neurosci. 2021;41(16):3610–3621. doi: 10.1523/JNEUROSCI.1498-20.2021. PubMed DOI PMC

Fritschy JM, Brünig I. Formation and plasticity of GABAergic synapses: physiological mechanisms and pathophysiological implications. Pharmacol Ther. 2003;98(3):299–323. doi: 10.1016/s0163-7258(03)00037-8. PubMed DOI

Roth FC, Draguhn A. GABA metabolism and transport: effects on synaptic efficacy. Neural Plast. 2012;2012:805830. doi: 10.1155/2012/805830. PubMed DOI PMC

Tyzio R, Nardou R, Ferrari DC, Tsintsadze T, Shahrokhi A, Eftekhari S, Khalilov I, Tsintsadze V, Brouchoud C, Chazal G, Lemonnier E, Lozovaya N, Burnashev N, Ben-Ari Y. Oxytocin-mediated GABA inhibition during delivery attenuates autism pathogenesis in rodent offspring. Science. 2014;343(6171):675–679. doi: 10.1126/science.1247190. PubMed DOI

Zhao H, Mao X, Zhu C, Zou X, Peng F, Yang W, Li B, Li G, Ge T, Cui R. GABAergic System Dysfunction in Autism Spectrum disorders. Front Cell Dev Biol. 2021;9:781327. doi: 10.3389/fcell.2021.781327. PubMed DOI PMC

Hollestein V, Poelmans G, Forde NJ, et al. Excitatory/inhibitory imbalance in autism: the role of glutamate and GABA gene-sets in symptoms and cortical brain structure. Transl Psychiatry. 2023;13:18. doi: 10.1038/s41398-023-02317-5. PubMed DOI PMC

Peça J, Feliciano C, Ting JT, Wang W, Wells MF, Venkatraman TN, Lascola CD, Fu Z, Feng G. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature. 2011;472(7344):437–442. doi: 10.1038/nature09965. PubMed DOI PMC

Chen Q, Deister CA, Gao X, Guo B, Lynn-Jones T, Chen N, Wells MF, Liu R, Goard MJ, Dimidschstein J, Feng S, Shi Y, Liao W, Lu Z, Fishell G, Moore CI, Feng G. Dysfunction of cortical GABAergic neurons leads to sensory hyper-reactivity in a Shank3 mouse model of ASD. Nat Neurosci. 2020;23(4):520–532. doi: 10.1038/s41593-020-0598-6. PubMed DOI PMC

Bukatova S, Renczes E, Reichova A, Filo J, Sadlonova A, Mravec B, Ostatnikova D, Bakos J, Bacova Z. Shank3 Deficiency is Associated with altered Profile of neurotransmission markers in pups and adult mice. Neurochem Res. 2021;46(12):3342–3355. doi: 10.1007/s11064-021-03435-6. PubMed DOI

Filice F, Vorckel KJ, Sungur AO, Wohr M, Schwaller B. Reduction in parvalbumin expression not loss of the parvalbumin-expressing GABA interneuron subpopulation in genetic parvalbumin and shank mouse models of autism. Mol Brain. 2016;9:10. doi: 10.1186/s13041-016-0192-8. PubMed DOI PMC

Liu YT, Tao CL, Zhang X, Xia W, Shi DQ, Qi L, Xu C, Sun R, Li XW, Lau PM, Zhou ZH, Bi GQ. Mesophasic organization of GABAA receptors in hippocampal inhibitory synapses. Nat Neurosci. 2020;23(12):1589–1596. doi: 10.1038/s41593-020-00729-w. PubMed DOI PMC

Reichova A, Bacova Z, Bukatova S, Kokavcova M, Meliskova V, Frimmel K, Ostatnikova D, Bakos J. Abnormal neuronal morphology and altered synaptic proteins are restored by oxytocin in autism-related SHANK3 deficient model. Mol Cell Endocrinol. 2020;518:110924. doi: 10.1016/j.mce.2020.110924. PubMed DOI

Bottermann M, Foss S, Caddy SL, et al. Complement C4 prevents viral infection through Capsid inactivation. Cell Host Microbe. 2019;25(4):617–629e7. doi: 10.1016/j.chom.2019.02.016. PubMed DOI PMC

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25(4):402–408. doi: 10.1006/meth.2001.1262. PubMed DOI

Shen J, Wang C, Ying J, Xu T, McAlinden A, O’Keefe RJ. Inhibition of 4-aminobutyrate aminotransferase protects against injury-induced osteoarthritis in mice. JCI Insight. 2019;4(18):e128568. doi: 10.1172/jci.insight.128568. PubMed DOI PMC

Liu Z, Sin KWT, Ding H, Doan HA, Gao S, Miao H, Wei Y, Wang Y, Zhang G, Li YP. p38β MAPK mediates ULK1-dependent induction of autophagy in skeletal muscle of tumor-bearing mice. Cell Stress. 2018;2(11):311–324. doi: 10.15698/cst2018.11.163. PubMed DOI PMC

Yang Y, Chen M, Zhai Z, Dai Y, Gu H, Zhou X, Hong J. Long non-coding RNAs Gabarapl2 and Chrnb2 positively regulate Inflammatory Signaling in a mouse model of Dry Eye. Front Med (Lausanne) 2021;8:808940. doi: 10.3389/fmed.2021.808940. PubMed DOI PMC

Provenzano G, Gilardoni A, Maggia M, Pernigo M, Sgadò P, Casarosa S, Bozzi Y. Altered expression of GABAergic markers in the Forebrain of Young and Adult Engrailed-2 knockout mice. Genes (Basel) 2020;11(4):384. doi: 10.3390/genes11040384. PubMed DOI PMC

Du Z, Tertrais M, Courtand G, Leste-Lasserre T, Cardoit L, Masmejean F, Halgand C, Cho YH, Garret M. Differential Alteration in expression of Striatal GABAAR subunits in Mouse models of Huntington’s Disease. Front Mol Neurosci. 2017;10:198. doi: 10.3389/fnmol.2017.00198. PubMed DOI PMC

Rowley NM, Smith MD, Lamb JG, Schousboe A, White HS. Hippocampal betaine/GABA transporter mRNA expression is not regulated by inflammation or dehydration post-status epilepticus. J Neurochem. 2011;117(1):82–90. doi: 10.1111/j.1471-4159.2011.07174.x. PubMed DOI PMC

Hasel P, Dando O, Jiwaji Z, et al. Neurons and neuronal activity control gene expression in astrocytes to regulate their development and metabolism. Nat Commun. 2017;8:15132. doi: 10.1038/ncomms15132. PubMed DOI PMC

Shikanai H, Yoshida T, Konno K, Yamasaki M, Izumi T, Ohmura Y, Watanabe M, Yoshioka M. Distinct neurochemical and functional properties of GAD67-containing 5-HT neurons in the rat dorsal raphe nucleus. J Neurosci. 2012;32(41):14415–14426. doi: 10.1523/JNEUROSCI.5929-11.2012. PubMed DOI PMC

Takahashi M, Haraguchi A, Tahara Y, Aoki N, Fukazawa M, Tanisawa K, Ito T, Nakaoka T, Higuchi M, Shibata S. Positive association between physical activity and PER3 expression in older adults. Sci Rep. 2017;7:39771. doi: 10.1038/srep39771. PubMed DOI PMC

Yan Z, Rein B. Mechanisms of synaptic transmission dysregulation in the prefrontal cortex: pathophysiological implications. Mol Psychiatry. 2022;27(1):445–465. doi: 10.1038/s41380-021-01092-3. PubMed DOI PMC

Kuruppath P, Xue L, Pouille F, Jones ST, Schoppa NE (2023) Hyperexcitability in the olfactory bulb and impaired fine odor discrimination in the Fmr1 KO mouse model of fragile X syndrome. bioRxiv [Preprint]. 10. 2023.04.10.536251 PubMed PMC

Rao SR, Kostic A, Baillargeon P, Fernandez-Vega V, de Anda MR, Fletcher K, Shumate J, Scampavia L, Buxbaum JD, Spicer TP. Screening for modulators of autism spectrum disorder using induced human neurons. SLAS Discov. 2022;27(2):128–139. doi: 10.1016/j.slasd.2022.01.004. PubMed DOI

Kathuria A, Nowosiad P, Jagasia R, Aigner S, Taylor RD, Andreae LC, Gatford NJF, Lucchesi W, Srivastava DP, Price J. Stem cell-derived neurons from autistic individuals with SHANK3 mutation show morphogenetic abnormalities during early development. Mol Psychiatry. 2018;23(3):735–746. doi: 10.1038/mp.2017.185. PubMed DOI PMC

Palmer AM, Degano AL, Park MJ, Ramamurthy S, Ronnett GV. Normal mitral cell dendritic development in the setting of Mecp2 mutation. Neuroscience. 2011;202:108–116. doi: 10.1016/j.neuroscience.2011.11.044. PubMed DOI PMC

Reichova A, Schaller F, Bukatova S, Bacova Z, Muscatelli F, Bakos J. The impact of oxytocin on neurite outgrowth and synaptic proteins in Magel2-deficient mice. Dev Neurobiol. 2021;81(4):366–388. doi: 10.1002/dneu.22815. PubMed DOI

Shyamasundar S, Ramya S, Kandilya D, Srinivasan DK, Bay BH, Ansari SA, Dheen ST. Maternal diabetes deregulates the expression of Mecp2 via miR-26b-5p in mouse embryonic neural stem cells. Cells. 2023;12(11):1516. doi: 10.3390/cells12111516. PubMed DOI PMC

Courchesne E, Pierce K. Brain overgrowth in autism during a critical time in development: implications for frontal pyramidal neuron and interneuron development and connectivity. Int J Dev Neurosci. 2005;23(2–3):153–170. doi: 10.1016/j.ijdevneu.2005.01.003. PubMed DOI

Falougy HE, Filova B, Ostatnikova D, Bacova Z, Bakos J. Neuronal morphology alterations in autism and possible role of oxytocin. Endocr Regul. 2019;53(1):46–54. doi: 10.2478/enr-2019-0006. PubMed DOI

Tabouy L, Getselter D, Ziv O, et al. Dysbiosis of microbiome and probiotic treatment in a genetic model of autism spectrum disorders. Brain Behav Immun. 2018;73:310–319. doi: 10.1016/j.bbi.2018.05.015. PubMed DOI

Pizzarelli R, Cherubini E. Alterations of GABAergic signaling in autism spectrum disorders. Neural Plast. 2011;2011:297153. doi: 10.1155/2011/297153. PubMed DOI PMC

Pagano J, Landi S, Stefanoni A, et al. Shank3 deletion in PV neurons is associated with abnormal behaviors and neuronal functions that are rescued by increasing GABAergic signaling. Mol Autism. 2023;14(1):28. doi: 10.1186/s13229-023-00557-2. PubMed DOI PMC

Nakamura T, Arima-Yoshida F, Sakaue F, et al. PX-RICS-deficient mice mimic autism spectrum disorder in Jacobsen syndrome through impaired GABAA receptor trafficking. Nat Commun. 2016;7:10861. doi: 10.1038/ncomms10861. PubMed DOI PMC

Babij R, Ferrer C, Donatelle A, et al. Gabrb3 is required for the functional integration of pyramidal neuron subtypes in the somatosensory cortex. Neuron. 2023;111(2):256–274e10. doi: 10.1016/j.neuron.2022.10.037. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...