Highly efficient eco-friendly sodium titanate sorbents of Cs(i), Sr(ii), Co(ii) and Eu(iii): synthesis, characterization and detailed adsorption study

. 2024 Jan 02 ; 14 (1) : 743-754. [epub] 20240105

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38188980

Development of useful all-around materials which can quickly and efficiently adsorb radionuclides in response to environmental radioactive contamination is an urgent research objective. In response to this need, our team developed a simple preparation method for stable sodium titanates which can serve as efficient agents for removal of radionuclides from water. With an emphasis on an environmentally friendly synthesis, the resulting materials were defined by a range of means and methods measuring e.g. pH, ionic strength, contact time or metal ion concentration in order to assess their potential for use and applications as sorbents. The data obtained from measurements revealed rapid removal kinetics (up to 10 minutes), wide range of pH use and high equilibrium capacity. The maximum amount of adsorbed ions as calculated from the Langmuir isotherm was equal to 206.3 mg g-1 for Cs(i), 60.0 mg g-1 for Sr(ii), 50.2 mg g-1 for Co(ii) and 103.4 mg g-1 for Eu(iii), significantly exceeding published data obtained with related materials. The removal mechanism is most likely ion exchange followed by complexation reactions, as indicated by TEM/EDS analyses. Given their extraordinary sorption capacity and facile synthesis under mild conditions, these materials are promising candidates for the efficient removal of radionuclides from aqueous solutions during the clean-up of radioactive pollution in the environment.

Zobrazit více v PubMed

Alby D. Charnay C. Heran M. Prelot B. Zajac J. Recent developments in nanostructured inorganic materials for sorption of cesium and strontium: Synthesis and shaping, sorption capacity, mechanisms, and selectivity-A review. J. Hazard. Mater. 2018;344:511–530. PubMed

Khin M. M. Nair A. S. Babu V. J. Murugan R. Ramakrishna S. A review on nanomaterials for environmental remediation. Energy Environ. Sci. 2012;5:8075–8109.

Yang D. J. Sarina S. Zhu H. Y. Liu H. W. Zheng Z. F. Xie M. X. Smith S. V. Komarneni S. Capture of Radioactive Cesium and Iodide Ions from Water by Using Titanate Nanofibers and Nanotubes. Angew. Chem., Int. Ed. 2011;50:10594–10598. PubMed

Yang D. J. Liu H. W. Zheng Z. F. Sarina S. Zhu H. Y. Titanate-based adsorbents for radioactive ions entrapment from water. Nanoscale. 2013;5:2232–2242. PubMed

Filipowicz B. Pruszynski M. Krajewski S. Bilewicz A. Adsorption of Cs-137 on titanate nanostructures. J. Radioanal. Nucl. Chem. 2014;301:889–895. PubMed PMC

Yang D. J. Zheng Z. F. Yuan Y. Liu H. W. Waclawik E. R. Ke X. B. Xie M. X. Zhu H. Y. Sorption induced structural deformation of sodium hexa-titanate nanofibers and their ability to selectively trap radioactive Ra(II) ions from water. Phys. Chem. Chem. Phys. 2010;12:1271–1277. PubMed

Möller T., Selective crystalline inorganic materials as ion exchangers in the treatment of nuclear waste solutions, Kumpula Department of Chemistry, Faculty of Science of the University of Helsinki, Helsinky, 2002

Ali I. M. Synthesis and sorption behavior of semicrystalline sodium titanate as a new cation exchanger. J. Radioanal. Nucl. Chem. 2004;260:149–157.

Du A. J. Sun D. D. Leckie J. O. Selective sorption of divalent cations using a high capacity sorbent. J. Hazard. Mater. 2011;187:96–100. PubMed

Hobbs D. T. Barnes M. J. Pulmano R. L. Marshall K. M. Edwards T. B. Bronikowski M. G. Fink S. D. Strontium and actinide separations from high level nuclear waste solutions using monosodium titanate 1. Simulant testing. Sep. Sci. Technol. 2005;40:3093–3111.

Al-Attar L. Dyer A. Harjula R. Uptake of radionuclides on microporous and layered ion exchange materials. J. Mater. Chem. 2003;13:2963–2968.

Majidnia Z. Fulazzaky M. A. Photocatalytic reduction of Cs(I) ions removed by combined maghemite-titania PVA-alginate beads from aqueous solution. J. Environ. Manage. 2017;191:219–227. PubMed

Long H. Wu P. Zhu N. Evaluation of Cs+ removal from aqueous solution by adsorption on ethylamine-modified montmorillonite. Chem. Eng. J. 2013;225:237–244.

Loos-Neskovic C. Ayrault S. Badillo V. Jimenez B. Garnier E. Fedoroff M. Jones D. J. Merinov B. Structure of copper-potassium hexacyanoferrate (II) and sorption mechanisms of cesium. J. Solid State Chem. 2004;177:1817–1828.

Moon J.-K. Lee E.-H. Kim H.-T. Ion exchange of Cs ion in acid solution with potassium cobalt hexacyanoferrate. Korean J. Chem. Eng. 2004;21:1026–1031.

Ambashta R. D. Deshingkar D. S. Wattal P. K. Bahadur D. Application of magnetite hexacyanoferrate composites in magnetically assisted chemical separation of cesium. J. Radioanal. Nucl. Chem. 2006;270:585–592.

Gruner B. Kvicalova M. Plesek J. Sicha V. Cisarova I. Lucanikova M. Selucky P. Cobalt bis(dicarbollide) ions functionalized by CMPO-like groups attached to boron by short bonds; efficient extraction agents for separation of trivalent f-block elements from highly acidic nuclear waste. J. Organomet. Chem. 2009;694:1678–1689.

Shehata F. A. Attallah M. F. Borai E. H. Hilal M. A. Abo-Aly M. M. Sorption reaction mechanism of some hazardous radionuclides from mixed waste by impregnated crown ether onto polymeric resin. Appl. Radiat. Isot. 2010;68:239–249. PubMed

Klementova M. Motlochova M. Bohacek J. Kupcik J. Palatinus L. Plizingrova E. Szatmary L. Subrt J. Metatitanic Acid Pseudomorphs after Titanyl Sulfates: Nanostructured Sorbents and Precursors for Crystalline Titania with Desired Particle Size and Shape. Cryst. Growth Des. 2017;17:6762–6769.

Palkovska M. Slovak V. Subrt J. Bohacek J. Barbierikova Z. Brezova V. Fajgar R. Investigation of the thermal decomposition of a new titanium dioxide material. J. Therm. Anal. Calorim. 2016;125:1071–1078.

Gavrilescu M. Pavel L. V. Cretescu I. Characterization and remediation of soils contaminated with uranium. J. Hazard. Mater. 2009;163:475–510. PubMed

Motlochova M. Slovak V. Plizingrova E. Lidin S. Subrt J. Highly-efficient removal of Pb(ii), Cu(ii) and Cd(ii) from water by novel lithium, sodium and potassium titanate reusable microrods. RSC Adv. 2020;10:3694–3704. PubMed PMC

Motlochova M. Slovak V. Plizingrova E. Szatmary L. Bezdicka P. Subrt J. The influence of annealing temperature on properties of TiO2 based materials as adsorbents of radionuclides. Thermochim. Acta. 2019;673:34–39.

Xie H. Li N. Liu B. S. Yang J. J. Zhao X. J. Role of Sodium Ion on TiO2 Photocatalyst: Influencing Crystallographic Properties or Serving as the Recombination Center of Charge Carriers? J. Phys. Chem. C. 2016;120:10390–10399.

Liu J. W. Han R. Wang H. T. Zhao Y. Lu W. J. Wu H. Y. Yu T. F. Zhang Y. X. Degradation of PCP-Na with La-B co-doped TiO2 series synthesized by the sol-gel hydrothermal method under visible and solar light irradiation. J. Mol. Catal. A: Chem. 2011;344:145–152.

Singh I. Birajdar B. Synthesis, characterization and photocatalytic activity of mesoporous Na-doped TiO2 nano-powder prepared via a solvent-controlled non-aqueous sol-gel route. RSC Adv. 2017;7:54053–54062.

El-Kamash A. M. El-Naggar M. R. El-Dessouky M. I. Immobilization of cesium and strontium radionuclides in zeolite-cement blends. J. Hazard. Mater. 2006;136:310–316. PubMed

Filipowicz B. Pruszyński M. Krajewski S. Bilewicz A. Adsorption of 137Cs on titanate nanostructures. J. Radioanal. Nucl. Chem. 2014;301:889–895. PubMed PMC

Sun X. M. Li Y. D. Synthesis and characterization of ion-exchangeable titanate nanotubes. Chem.–Eur. J. 2003;9:2229–2238. PubMed

Kasap S. Piskin S. Tel H. Titanate nanotubes: preparation, characterization and application in adsorption of strontium ion from aqueous solution. Radiochim. Acta. 2012;100:925–929.

Chitrakar R. Makita Y. Sonoda A. Cesium Ion Exchange on Synthetic Birnessite (Na0.35MnO2O) Chem. Lett. 2011;40:1118–1120.

Lehto J. Harjula R. Leinonen H. Paajanen A. Laurila T. Mononen K. Saarinen L. Advanced separation of harmful metals from industrial waste effluents by ion exchange. J. Radioanal. Nucl. Chem. 1996;208:435–443.

Prout W. E. Russell E. R. Groh H. J. Ion Exchange Absorption Of Cesium By Potassium Hexacyanocobalt (2) Ferrate (2) J. Inorg. Nucl. Chem. 1965;27:473.

Handley-Sidhu S. Renshaw J. C. Moriyama S. Stolpe B. Mennan C. Bagheriasl S. Yong P. Stamboulis A. Paterson-Beedle M. Sasaki K. Pattrick R. A. D. Lead J. R. Macaskie L. E. Uptake of Sr2+ and Co2+ into Biogenic Hydroxyapatite: Implications for Biomineral Ion Exchange Synthesis. Environ. Sci. Technol. 2011;45:6985–6990. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...