Self-Assembled Fluorinated Nanoparticles as Sensitive and Biocompatible Theranostic Platforms for 19F MRI
Language English Country Germany Media print-electronic
Document type Journal Article
Grant support
LX22NPO5104
National Institute for Research of Metabolic and Cardiovascular Diseases
22-03102S
Grantová Agentura České Republiky
IN00023001
Ministerstvo Zdravotnictví České Republiky
NU22-08-00286
Ministerstvo Zdravotnictví České Republiky
- Keywords
- clofazimine, fluorine‐19, magnetic resonance, nanoparticles, polymerization‐induced self‐assembly, theranostics,
- MeSH
- Biocompatible Materials chemistry MeSH
- Fluorine chemistry MeSH
- Fluorocarbons chemistry MeSH
- Halogenation MeSH
- Humans MeSH
- Magnetic Resonance Imaging methods MeSH
- Micelles MeSH
- Mice MeSH
- Nanoparticles * chemistry therapeutic use MeSH
- Theranostic Nanomedicine * MeSH
- Fluorine-19 Magnetic Resonance Imaging * methods MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Biocompatible Materials MeSH
- Fluorine MeSH
- Fluorocarbons MeSH
- Micelles MeSH
Theranostics is a novel paradigm integrating therapy and diagnostics, thereby providing new prospects for overcoming the limitations of traditional treatments. In this context, perfluorocarbons (PFCs) are the most widely used tracers in preclinical fluorine-19 magnetic resonance (19F MR), primarily for their high fluorine content. However, PFCs are extremely hydrophobic, and their solutions often display reduced biocompatibility, relative instability, and subpar 19F MR relaxation times. This study aims to explore the potential of micellar 19F MR imaging (MRI) tracers, synthesized by polymerization-induced self-assembly (PISA), as alternative theranostic agents for simultaneous imaging and release of the non-steroidal antileprotic drug clofazimine. In vitro, under physiological conditions, these micelles demonstrate sustained drug release. In vivo, throughout the drug release process, they provide a highly specific and sensitive 19F MRI signal. Even after extended exposure, these fluoropolymer tracers show biocompatibility, as confirmed by the histological analysis. Moreover, the characteristics of these polymers can be broadly adjusted by design to meet the wide range of criteria for preclinical and clinical settings. Therefore, micellar 19F MRI tracers display physicochemical properties suitable for in vivo imaging, such as relaxation times and non-toxicity, and high performance as drug carriers, highlighting their potential as both diagnostic and therapeutic tools.
See more in PubMed
S. S. Kelkar, T. M. Reineke, Bioconjugate Chem. 2011, 22, 1879.
T. Lammers, S. Aime, W. E. Hennink, G. Storm, F. Kiessling, Acc. Chem. Res. 2011, 44, 1029.
M. B. Shete, T. S. Patil, A. S. Deshpande, G. Saraogi, N. Vasdev, M. Deshpande, K. Rajpoot, R. K. Tekade, J. Drug Delivery Sci. Technol. 2022, 71, 103280.
J. V. Jokerst, S. S. Gambhir, Acc. Chem. Res. 2011, 44, 1050.
J. H. Ryu, S. Lee, S. Son, S. H. Kim, J. F. Leary, K. Choi, I. C. Kwon, J. Controlled Release 2014, 190, 477.
T. Lammers, F. Kiessling, W. E. Hennink, G. Storm, Mol. Pharmaceutics 2010, 7, 1899.
L.‐S. Wang, M.‐C. Chuang, J. A. Ho, IJN 2012, 4679.
V. P. B. Grover, J. M. Tognarelli, M. M. E. Crossey, I. J. Cox, S. D. Taylor‐Robinson, M. J. W. McPhail, J. Clin. Exp. Hepatol. 2015, 5, 246.
H. B. Na, I. C. Song, T. Hyeon, Adv. Mater. 2009, 21, 2133.
G. Wang, H. Yang, J. Li, J. Wen, K. Zhong, C. Tian, Magn. Reson. Lett. 2023, 3, 327.
O. Sedlacek, D. Jirak, M. Vit, N. Ziołkowska, O. Janouskova, R. Hoogenboom, Macromolecules 2020, 53, 6387.
L. Kracíková, L. Androvič, I. Potočková, N. Ziółkowska, M. Vít, D. Červený, D. Jirák, R. Laga, Molecules 2023, 28, 2334.
I. Tirotta, V. Dichiarante, C. Pigliacelli, G. Cavallo, G. Terraneo, F. B. Bombelli, P. Metrangolo, G. Resnati, Chem. Rev. 2015, 115, 1106 .
J. C. Knight, P. G. Edwards, S. J. Paisey, RSC Adv. 2011, 1, 1415.
M. Vít, M. Burian, Z. Berková, J. Lacik, O. Sedlacek, R. Hoogenboom, Z. Raida, D. Jirak, J. Magn. Reson. 2021, 329, 107023.
D. Jirak, A. Galisova, K. Kolouchova, D. Babuka, M. Hruby, Magn. Reson. Mater. Phys., Biol. Med. 2019, 32, 173.
L. Xu, H.‐W. Liang, Y. Yang, S.‐H. Yu, Chem. Rev. 2018, 118, 3209.
X. Li, L. Wang, Y. Fan, Q. Feng, F. Cui, J. Nanomater. 2012, 2012, 548389.
G. Sanità, B. Carrese, A. Lamberti, Front. Mol. Biosci. 2020, 7, 587012.
R. S. M. Gomes, R. P. D. Neves, L. Cochlin, A. Lima, R. Carvalho, P. Korpisalo, G. Dragneva, M. Turunen, T. Liimatainen, K. Clarke, S. Ylä‐Herttuala, C. Carr, L. Ferreira, ACS Nano 2013, 7, 3362.
A. Tennstaedt, A. Mastropietro, M. Nelles, A. Beyrau, M. Hoehn, PLoS One 2015, 10, 0144262.
L. Wu, F. Liu, S. Liu, X. Xu, Z. Liu, X. Sun, Int. J. Nanomed. 2020, 15, 7377.
M. A. Miller, E. M. Sletten, ChemBioChem 2020, 21, 3451.
C. Zhang, K. Yan, C. Fu, H. Peng, C. J. Hawker, A. K. Whittaker, Chem. Rev. 2022, 122, 167.
C. Fu, Y. Yu, X. Xu, Q. Wang, Y. Chang, C. Zhang, J. Zhao, H. Peng, A. K. Whittaker, Prog. Polym. Sci. 2020, 108, 101286.
S. L. Canning, G. N. Smith, S. P. Armes, Macromolecules 2016, 49, 1985.
N. J. W. Penfold, J. Yeow, C. Boyer, S. P. Armes, ACS Macro Lett. 2019, 8, 1029.
X. Zhao, C. Sun, F. Xiong, T. Wang, S. Li, F. Huo, X. Yao, Research 2023, 6, 0113.
V. M. Panakkal, D. Havlicek, E. Pavlova, M. Filipová, S. Bener, D. Jirak, O. Sedlacek, Biomacromolecules 2022, 23, 4814.
Z. Feng, Q. Li, W. Wang, Q. Ni, Y. Wang, H. Song, C. Zhang, D. Kong, X.‐J. Liang, P. Huang, Biomaterials 2020, 256, 120184.
C. Jacoby, S. Temme, F. Mayenfels, N. Benoit, M. P. Krafft, R. Schubert, J. Schrader, U. Flögel, NMR Biomed. 2014, 27, 261.
A. Albanese, P. S. Tang, W. C. W. Chan, Annu. Rev. Biomed. Eng. 2012, 14, 1.
J. S. Suk, Q. Xu, N. Kim, J. Hanes, L. M. Ensign, Adv. Drug Delivery Rev. 2016, 99, 28.
E. Ben‐Akiva, R. A. Meyer, H. Yu, J. T. Smith, D. M. Pardoll, J. J. Green, Sci. Adv. 2020, 6, aay9035.
A. H. J. Staal, K. Becker, O. Tagit, N. Koen Van Riessen, O. Koshkina, A. Veltien, P. Bouvain, K. R. G. Cortenbach, T. Scheenen, U. Flögel, S. Temme, M. Srinivas, Biomaterials 2020, 261, 120307.
M. E. Fox, F. C. Szoka, J. M. J. Fréchet, Acc. Chem. Res. 2009, 42, 1141.
C. Gong, M. Shan, B. Li, G. Wu, Colloids Surf., B 2016, 146, 396.
M. Cherri, M. Ferraro, E. Mohammadifar, E. Quaas, K. Achazi, K. Ludwig, C. Grötzinger, M. Schirner, R. Haag, ACS Biomater. Sci. Eng. 2021, 7, 2569.
Y. Li, J. Hu, X. Liu, Y. Liu, S. Lv, J. Dang, Y. Ji, J. He, L. Yin, Nano Res. 2019, 12, 999.
J. Chen, F. Zehtabi, J. Ouyang, J. Kong, W. Zhong, M. M. Q. Xing, J. Mater. Chem. 2012, 22, 7121.
R. Yang, R. Li, L. Zhang, Z. Xu, Y. Kang, P. Xue, J. Mater. Chem. B 2020, 8, 7766.
K. Kolouchova, D. Jirak, O. Groborz, O. Sedlacek, N. Ziolkowska, M. Vit, E. Sticova, A. Galisova, P. Svec, J. Trousil, M. Hajek, M. Hruby, J. Controlled Release 2020, 327, 50.
K. Thirupathi, T. T. V. Phan, M. Santhamoorthy, V. Ramkumar, S.‐C. Kim, Polymers 2022, 15, 167.
J. M. Bak, K.‐B. Kim, J.‐E. Lee, Y. Park, S. S. Yoon, H. M. Jeong, H. Lee, Polym. Chem. 2013, 4, 2219.
A. Gálisová, V. Herynek, E. Swider, E. Sticová, A. Pátiková, L. Kosinová, J. Kříž, M. Hájek, M. Srinivas, D. Jirák, Mol. Imaging Biol. 2019, 21, 454.
Cationic fluorinated micelles for cell labeling and 19F-MR imaging