Detection of oxalyl-CoA decarboxylase (oxc) and formyl-CoA transferase (frc) genes in novel probiotic isolates capable of oxalate degradation in vitro
Language English Country United States Media print-electronic
Document type Journal Article
PubMed
38217756
PubMed Central
PMC11003902
DOI
10.1007/s12223-024-01128-5
PII: 10.1007/s12223-024-01128-5
Knihovny.cz E-resources
- Keywords
- Degradation, Formyl-CoA transferase, LAB, Oxalate, Oxalyl-CoA decarboxylase, Probiotic,
- MeSH
- Acyl Coenzyme A * MeSH
- Coenzyme A-Transferases genetics metabolism MeSH
- Carboxy-Lyases * genetics MeSH
- Humans MeSH
- Oxalates metabolism MeSH
- Probiotics * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Acyl Coenzyme A * MeSH
- Coenzyme A-Transferases MeSH
- formyl-coenzyme A transferase MeSH Browser
- Carboxy-Lyases * MeSH
- Oxalates MeSH
- oxalyl CoA decarboxylase MeSH Browser
- oxalyl-coenzyme A MeSH Browser
Oxalate degradation is one of lactic acid bacteria's desirable activities. It is achieved by two enzymes, formyl coenzyme A transferase (frc) and oxalyl coenzyme A decarboxylase (oxc). The current study aimed to screen 15 locally isolated lactic acid bacteria to select those with the highest oxalate degradation ability. It also aimed to amplify the genes involved in degradation. MRS broth supplemented with 20 mM sodium oxalate was used to culture the tested isolates for 72 h. This was followed by an enzymatic assay to detect remaining oxalate. All isolates showed oxalate degradation activity to variable degrees. Five isolates demonstrated high oxalate degradation, 78 to 88%. To investigate the oxalate-degradation potential of the selected isolates, they have been further tested for the presence of genes that encode for enzymes involved in oxalate catabolism, formyl coenzyme A transferase (frc) and oxalyl coenzyme A decarboxylase (oxc). Three strains showed bands with the specific OXC and FRC forward and reverse primers designated as (SA-5, 9 and 37). Species-level identification revealed Loigolactobacillus bifermentans, Lacticaseibacillus paracasei, and Lactiplantibacillus plantarum. Preliminary results revealed that the tested probiotic strains harbored both oxc and frc whose products are putatively involved in oxalate catabolism. The probiotic potential of the selected strains was evaluated, and they showed high survival rates to both simulated gastric and intestinal fluids and variable degrees of antagonism against the tested Gram-positive and negative pathogens and were sensitive to clarithromycin but resistant to both metronidazole and ceftazidime. Finally, these strains could be exploited as an innovative approach to establish oxalate homeostasis in humans and prevent kidney stone formation.
See more in PubMed
Abonee FJ, Mishu ID, Akter S, Rahman SR, Malek MA. Exploring the probiotic proficiency of dairy derived lactic acid bacteria and their antimicrobial efficacy against multi-drug resistant diarrheal and uro-pathogens. Biores Commun. 2023;9(2):1340–1350. doi: 10.3329/brc.v9i2.67091. DOI
Altermann E, Russell WM, Azcarate-Peril MA, Barrangou R, Buck BL, McAuliffe O, Souther N, Dobson A. Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM. Proc Natl Acad Sci USA. 2005;102:3906–3912. doi: 10.1073/pnas.0409188102. PubMed DOI PMC
Azcarate-Peril MA, Altermann E, Yong JG, Tallon R, Sanozky-Dawes RB, Pfeiler EA. Analysis of the genome sequence of Lactobacillus gasseri ATCC 33323 reveals the molecular basis of an autochthonous intestinal organism. Appl Environ Microbiol. 2008;74:4610–4625. doi: 10.1128/AEM.00054-08. PubMed DOI PMC
Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol. 1966;45(4):493–496. doi: 10.1093/ajcp/45.4_ts.493. PubMed DOI
Berthold CL, Moussatche P, Richards NGJ, Linqvist Y. Structural bases for activation of the thiamine diphosphate-dependent enzyme oxalyl-CoA decarboxylase by adenosine diphosphate. J Biol Chem. 2005;280:41645–41654. doi: 10.1074/jbc.M509921200. PubMed DOI
Clinical and Laboratory Standards Institute (CLSI) (2020) Performance standards for antimicrobial susceptibility testing: M100 guideline, 30th edn PubMed PMC
Chamberlain CA, Hatch M, Garrett TJ. Metabolomic profiling of oxalate-degrading probiotic Lactobacillus acidophilus and Lactobacillus gasseri. PLoS ONE. 2019;14(9):e0222393. doi: 10.1371/journal.pone.0222393. PubMed DOI PMC
Cho JG, Gebhart CJ, Furrow E, Lulich JP. Assessment of in vitro oxalate degradation by Lactobacillus species cultured from veterinary probiotics. Am J Vet Res. 2015;76(9):801–806. doi: 10.2460/ajvr.76.9.801. PubMed DOI
Chouraddi R, Kumar S. Kumar B (2023) Techno-functional characterization of fecal lactobacilli isolates of Bos indicus calves for probiotic properties. Vet Res Commun. 2023 doi: 10.1007/s11259-023-10077-2. PubMed DOI
Darilmaz DO, Sönmez S, Beyatli Y (2019) The effects of inulin as a prebiotic supplement and the synbiotic interactions of probiotics to improve oxalate degrading activity. Int J Food Sci Technol 54:121–131. 10.1111/ijfs.13912
Duncan SH, Richardson AJ, Kaul P, Holmes RP, Allison MJ, Stewart C (2002) Oxalobacter formigenes and its potential role in human health. Appl Enviro Microb 68:3841–3847. 10.1128/AEM.68.8.3841-3847.2002 PubMed PMC
Ellis ML, Shaw KJ, Jackson SB, Daniel SL, Knight J. Analysis of commercial kidney stone probiotic supplements. Urol. 2015;85(3):517–521. doi: 10.1016/j.urology.2014.11.013. PubMed DOI PMC
Garcia EF, Luciano WA, Xavier DE, da Costa WCA, de Sousa OK, Franco OL, de Morais Júnior MA, Lucena BTL, Picão RC, Magnani M, Saarela M, de Souza EL. Identification of lactic acid bacteria in fruit pulp processing byproducts and potential probiotic properties of selected Lactobacillus Strains. Front Microbiol. 2016;7:1371. doi: 10.3389/fmicb.2016.01371. PubMed DOI PMC
Ghate SD, Shastry RP, Rekha PD (2021) Rapid detection of oxalotrophic endophytic bacteria by colony PCR from Colocasia esculenta and Remusatia vivipara. Ecol Gen Genom 21:100102. 10.1016/j.egg.2021.100102
Giardina S, Scilironi C, Michelotti A, Samuele A, Borella F, Daglia M, Marzatico F (2014) In Vitro anti-inflammatory activity of selected oxalate-degrading probiotic bacteria: potential applications in the prevention and treatment of hyperoxaluria. J Food Sci 79:3. 10.1111/1750-3841.12344 PubMed
Harzallah D, Belhadj H (2013) Lactic acid bacteria as probiotics: characteristics, selection criteria and role in immunomodulation of human GI muccosal barrier. Intech Open Science/Open Minds. 10.5772/50732
Hatch M (2017) Gut microbiota and oxalate homeostasis. Ann Transl Med 5(2):36. 10.21037/atm.2016.12.70 PubMed PMC
Hornberger B, Bollner MR (2018) Kidney stones. Phys Assist Clin 3:37–54. 10.1016/j.cpha.2017.08.006
Jacobsen CN, Nielsen VR, Hayford AE, Møller PL, Michaelsen KF, Paerregaard A. Screening of probiotic activities of forty-seven strains of Lactobacillus spp. by in vitro techniques and evaluation of the colonization ability of five selected strains in humans. Appl Env Microbiol. 1999;65:4949–4956. doi: 10.1128/AEM.65.11.4949-4956.1999. PubMed DOI PMC
Jonsson S, Ricagno S, Lindqvist Y, Richards NGJ. Kinetic and mechanistic characterization of the formyl-CoA transferase from Oxalobacter formigenes. J Biol Chem. 2004;279:36003–36012. doi: 10.1074/jbc.M404873200. PubMed DOI
Kaufman DW, Kelly JP, Curhan GC, Anderson TE, Dretler SP, Preminger GM, Cave DR. Oxalobacter formigenes may reduce the risk of calcium oxalate kidney stones. J Am Soc Nephrol. 2008;19:1197–1203. doi: 10.1681/ASN.2007101058. PubMed DOI PMC
Kullin B, Tannock GW, Loach DM, Kimura K, Abratt VR, Reid SJ. A functional analysis of the formyl-coenzyme A (frc) gene from Lactobacillus reuteri 100–23C B. J Appl Microbiol. 2014;116:1657–1667. doi: 10.1111/jam.12500. PubMed DOI
Lewanika TR, Abratt S, Macfarlane V, Macfarlane GS (2007) Lactobacillus gasseri Gasser AM63T degrades oxalate in a multistage continuous culture simulator of the human colonic microbiota. FEMS Microbiol Ecol 61(1):110–120. 10.1111/j.1574-6941.2007.00327.x PubMed
Liebman M, Al-Wahsh IA (2011) Probiotics and other key determinants of dietary oxalate absorption. Adv Nutr 2:254–260. 10.3945/an.111.000414 PubMed PMC
Mehra Y, Viswanathan P. High quality whole-genome sequence analysis of Lactobacillus paragasseri UBLG-36 reveals oxalate degrading potential of the strain. PLoS ONE. 2021;16(11):e0260116. doi: 10.1371/journal.pone.0260116. PubMed DOI PMC
Miller AW, Kohl KD, Dearing MD (2014) The gastrointestinal tract of the white-throated woodrat (Neotoma albigula) harbors distinct consortia of oxalate-degrading bacteria. Appl Environ Microbiol 80(5):1595–1601. 10.1128/AEM.03742-13 PubMed PMC
Monteagudo-Mera A, Rodrígues-Aparício L, Rúa J, Martínez-Blanco H, Navasa N, García-Armesto MR. In vitro evaluation of physiological probiotic properties of different lactic acid bacteria strains of dairy and human origin. J Funct Foods. 2012;4:531–541. doi: 10.1016/j.jff.2012.02.014. DOI
Okombo J, Liebma M. Probiotic-induced reduction of gastrointestinal oxalate absorption in healthy subjects. Urolo Res. 2010;38:169–178. doi: 10.1007/s00240-010-0262-9. PubMed DOI
Popović M, Stojanović M, Veličković Z, Kovačević A, Miljković R, Mirković N, Marinković A. Characterization of potential probiotic strain, L. reuteri B2, and its microencapsulation using alginate-based biopolymers. Inter J Bio Macromol. 2021;183:423–434. doi: 10.1016/j.ijbiomac.2021.04.177. PubMed DOI
Prabhurajeshwar C, Chandrakanth RK. Probiotic potential of Lactobacilli with antagonistic activity against pathogenic strains: an in vitro validation for the production of inhibitory substances. Biomed J. 2017;40(5):270–283. doi: 10.1016/j.bj.2017.06.008. PubMed DOI PMC
Pundir KR, Rana S, Kashyap N, Kaur A. Probiotic potential of lactic acid bacteria isolated from food samples: an in vitro study. J Appl Pharma Sci. 2013;3(3):085–093. doi: 10.7324/JAPS.2013.30317. DOI
Sasikumar P, Gomathi S, Anbazhagan K. Secretion of biologically active heterologous oxalate decarboxylase (OxdC) in Lactobacillus plantarum WCFS1 using homologous signal peptides. Biomed Res Int. 2013;2013:280432. doi: 10.1155/2013/280432. PubMed DOI PMC
Salvetti E, Torriani S, Felis GE. The genus Lactobacillus: a taxonomic update. Probio Antimic Prot. 2012;4:217–226. doi: 10.1007/s12602-012-9117-8. PubMed DOI
Turroni S, Bendazzoli C, Dipalo SC, Candela M, Vitali B, Gotti R, Brigidi P (2010) Oxalate-degrading activity in Bifidobacterium animalis subsp. lactis: impact of acidic conditions on the transcriptional levels of the oxalyl coenzyme A (CoA) decarboxylase and formyl-CoA transferase genes. Appl Env Microbiol 76:5609–5620. 10.1128/AEM.00844-10 PubMed PMC
Von Unruh GE, Voss S, Sauerbruch T, Hesse A. Dependence of oxalate absorption on the daily calcium intake. J Am Soc Nephrol. 2004;15(6):1567–1573. doi: 10.1097/01.asn.0000127864.26968.7f. PubMed DOI
Wang X, Sarker RI, Maloney PC. Analysis of substrate-binding elements in OxlT, the oxalate:formate antiporter of Oxalobacter formigenes. Biochem. 2006;45:10344–10350. doi: 10.1021/bi060746v. PubMed DOI PMC
Weese JS, Weese HE, Yuricek L, Rousseau J. Oxalate degradation by intestinal lactic acid bacteria in dogs and cats. Vet Microbiol. 2004;101:161–166. doi: 10.1016/j.vetmic.2004.03.017. PubMed DOI
Wigner P, Bijak M, Saluk-Bijak J. Probiotics in the prevention of calcium oxalate urolithiasis. Cells. 2022;11:284. doi: 10.3390/cells11020284. PubMed DOI PMC
Worcester EM, Coe FL. Clinical practice. Calcium kidney stones. N Engl J Med. 2010;363:954–963. doi: 10.1056/NEJMcp1001011. PubMed DOI PMC
Zhao C, Yang H, Zhu X. Oxalate-degrading enzyme recombined lactic acid bacteria strains reduce hyperoxaluria. Urolo. 2017;113:253–257. doi: 10.1016/j.urology.2017.11.038. PubMed DOI