The tellurite resistance gene cluster of pathogenic bacteria and its effect on oxidative stress response

. 2024 Apr ; 69 (2) : 433-444. [epub] 20240123

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38261148

Grantová podpora
APVV-17-0099 Agentúra na Podporu Výskumu a Vývoja
APVV-20-054005 Agentúra na Podporu Výskumu a Vývoja

Odkazy

PubMed 38261148
PubMed Central PMC11003894
DOI 10.1007/s12223-024-01133-8
PII: 10.1007/s12223-024-01133-8
Knihovny.cz E-zdroje

Tellurite resistance gene clusters have been identified in numerous pathogenic bacteria, including clinical isolates of Escherichia coli. The rareness of tellurium in host organisms and the noncontaminated environment raises a question about the true functionality of tellurite resistance gene clusters in pathogenesis and their possible contribution to bacterial fitness. The study aims to point out the beneficial effects of the tellurite resistance gene cluster of pathogenic bacteria to survive in ROS-rich environments. Here, we analysed the bacterial response to oxidative stress conditions with and without tellurite resistance gene clusters, which are composed of terWY1XY2Y3 and terZABCDEF genes. By measuring the levels of protein carbonylation, lipid peroxidation, and expression changes of oxidative stress genes upon oxidative stress, we propose a tellurite resistance gene cluster contribution to the elimination of oxidative damage, potentially increasing fitness and resistance to reactive oxygen species during macrophage attack. We have shown a different beneficial effect of various truncated versions of the tellurite resistance gene cluster on cell survival. The terBCDEF genes increased the survival of E. coli strain MC4100 by 13.21%, terW and terZABCDEF by 10.09%, and terWY1XY2Y3 and terZABCDEF by 25.57%, respectively. The ability to survive tellurite treatment is the most significant at 44.8% in wild clinical strain KL53 compared to laboratory strain E. coli MC4100 due to a complete wild-type plasmid presence.

Zobrazit více v PubMed

Alonso G, Gomes C, González C, Rodríguez Lemoine V. On the mechanism of resistance to channel-forming colicins (PacB) and tellurite, encoded by plasmid Mip233 (IncHI3) FEMS Microbiol Lett. 2000;192:257–261. doi: 10.1111/j.1574-6968.2000.tb09391.x. PubMed DOI

Behuliak M, Palffy R, Gardlik R, Hodosy J, Halcak L, Celec P. Variability of thiobarbituric acid reacting substances in saliva. Dis Markers. 2009;26:49–53. doi: 10.3233/DMA-2009-0606. PubMed DOI PMC

Belzile N, Chen YW. Tellurium in the environment: a critical review focused on natural waters, soils, sediments and air-borne particles. Appl Geochem. 2015;63:83–92. doi: 10.1016/j.apgeochem.2015.07.002. DOI

Borghese R, Borsetti F, Foladori P, Ziglio F, Zannoni D. Effects of the metalloid oxyanion tellurite (TeO32-) on growth characteristics of the phototrophic bacterium Rhodobacter capsulatus. Appl Environ Microbiol. 2004;70:6595–6602. doi: 10.1128/aem.70.11.6595-6602.2004. PubMed DOI PMC

Borsetti F, Borghese R, Francia F, Randi MR, Fedi S, Zannoni D. Reduction of potassium tellurite to elemental tellurium and its effect on the plasma membrane redox components of the facultative phototroph Rhodobacter capsulatus. Protoplasma. 2003;221:153–161. doi: 10.1007/s00709-002-0058-z. PubMed DOI

Bowler C, Montagu MV, Inze D. Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol. 1992;43:83–116. doi: 10.1146/annurev.pp.43.060192.000503. DOI

Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–254. doi: 10.1006/abio.1976.9999. PubMed DOI

Burian J, Beno J, Macor M, Guller L, Siekel P. Inducible resistance to tellurite in a human isolate of Escherichia coli. Biologia. 1990;45:1021–1026.

Burian J, Tu N, Klucar L, Guller L, Lloyd-Jones G, Stuchlik S, Fejdi P, Siekel P, Turna J. In vivo and in vitro cloning and phenotype characterization of tellurite resistance determinant conferred by plasmid pTE53 of a clinical isolate of Escherichia coli. Folia Microbiol. 1998;43:589–599. doi: 10.1007/bf02816374. PubMed DOI

Carty JL, Bevan R, Waller H, Mistry N, Cooke M, Lunec J, et al. The effects of vitamin C supplementation on protein oxidation in healthy volunteers. Biochem Biophys Res Commun. 2000;273:729–735. doi: 10.1006/bbrc.2000.3014. PubMed DOI

Cassier-Chauvat C, Marceau F, Farci S, Ouchane S, Chauvat F. The glutathione system: a journey from cyanobacteria to higher eukaryotes. Antioxidants. 2023;2:1199. doi: 10.3390/antiox12061199. PubMed DOI PMC

Chasteen TG, Fuentes DE, Tantaleán JC, Vásquez CC. Tellurite: history, oxidative stress, and molecular mechanisms of resistance. FEMS Microbiol Rev. 2009;33:820–832. doi: 10.1111/j.1574-6976.2009.00177.x. PubMed DOI

Chen YT, Chang HY, Lai YC, Pan CC, Tsai SF, Peng HL. Sequencing and analysis of the large virulence plasmid pLVPK of Klebsiella pneumoniae CG43. Gene. 2004;337:89–198. doi: 10.1016/j.gene.2004.05.008. PubMed DOI

Devasagayam TPA, Boloor KK, Ramasarma T. Methods for estimating lipid peroxidation: an analysis of merits and demerits. Indian J Biochem Biophys. 2003;40:300–308. PubMed

Drapper HH, Squires EJ, Mahmoodi H, Wu J, Agarwal S, Hadley M. A comparative evaluation of thiobarbituric acid methods for the determination of malondialdehyde in biological materials. Free Radic Biol Med. 1993;15:353–363. doi: 10.1016/0891-5849(93)90035-s. PubMed DOI

Fang FC, Frawley ER, Tapscott T, Vázquez-Torres A. Bacterial stress responses during host infection. Cell Host Microbe. 2016;20:133–143. doi: 10.1016/j.chom.2016.07.009. PubMed DOI PMC

Farias P, Francisco R, Morais PV (2022) Potential of tellurite resistance in heterotrophic bacteria from mining environments. iScience 25:104566. 10.1016/j.isci.2022.104566 PubMed PMC

Filella M, Reimann C, Biver M, Rodushkin I, Rodushkina K. Tellurium in the environment: current knowledge and identification of gaps. Environ Chem. 2019;16:215–228. doi: 10.1071/EN18229. DOI

Fridovich I. Superoxide radicals, superoxide dismutases and the aerobic lifestyle. Photochem Photobiol. 1978;28:733–741. doi: 10.1111/j.1751-1097.1978.tb07009.x. PubMed DOI

Garzoni C, Kelley WL. Staphylococcus aureus: new evidence for intracellular persistence. Trends Microbiol. 2009;17:59–65. doi: 10.1016/j.tim.2008.11.005. PubMed DOI

Grayfer L, Hodgkinson JW, Belosevic M. Antimicrobial responses of teleost phagocytes and innate immune evasion strategies of intracellular bacteria. Dev Comp Immunol. 2014;43:223–242. doi: 10.1016/j.dci.2013.08.003. PubMed DOI

Hassan H, Troxell B. Transcriptional regulation by ferric uptake regulator (Fur) in pathogenic bacteria. Front Cell Infect Microbiol. 2013;3:59. doi: 10.3389/fcimb.2013.00059. PubMed DOI PMC

Jobling MG, Ritchie DA. Genetic and physical analysis of plasmid genes expressing inducible resistance of tellurite in Escherichia coli. Mol Gen Genet. 1987;208:288–293. doi: 10.1007/bf00330455. PubMed DOI

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI

Lloy RV, Hanna PM, Mason RP. The origin of the hydroxyl radical oxygen in the Fenton reaction. Free Radic Biol Med. 1997;22:885–888. doi: 10.1016/s0891-5849(96)00432-7. PubMed DOI

Mandell GL. Catalase, superoxide dismutase, and virulence of Staphylococcus aureus. In vitro and in vivo studies with emphasis on staphylococcal-leukocyte interaction. J Clin Invest. 1975;55:561–566. doi: 10.1172/jci107963. PubMed DOI PMC

Medina E, Rohde M, Chhatwal GS. Intracellular survival of Streptococcus pyogenes in polymorphonuclear cells results in increased bacterial virulence. Infect Immun. 2003;71:5376–5380. doi: 10.1128/iai.71.9.5376-5380.2003. PubMed DOI PMC

Miller G, Shulaev V, Mittler R. Reactive oxygen signaling and abiotic stress. Physiol Plant. 2008;133:481–489. doi: 10.1111/j.1399-3054.2008.01090.x. PubMed DOI

Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002;7:405–410. doi: 10.1016/s1360-1385(02)02312-9. PubMed DOI

Mittler R, Vanderauwera S, Gollery M, Breusegem FV. Reactive oxygen gene network of plants. Trends Plant Sci. 2004;9:490–498. doi: 10.1016/j.tplants.2004.08.009. PubMed DOI

Muñoz-Villagrán CM, Mendez KN, Cornejo F, Figueroa M, Undabarrena A, Morales EH, Arenas-Salinas M, Arenas FA, Castro-Nallar E, Vásquez CC. Comparative genomic analysis of a new tellurite-resistant Psychrobacter strain isolated from the Antarctic Peninsula. PeerJ. 2018;6:e4402. doi: 10.7717/peerj.4402. PubMed DOI PMC

Nebe-von-Caron G, Stephens PJ, Hewitt CJ, Powell JR, Badley RA. Analysis of bacterial function by multi-colour fluorescence flow cytometry and single cell sorting. J Microbiol Methods. 2000;42:97–114. doi: 10.1016/s0167-7012(00)00181-0. PubMed DOI

Nguyen TTH, Kikuchi T, Tokunaga T, Iyoda S, Iguchi A. Diversity of the tellurite resistance gene operon in Escherichia coli. Front Microbiol. 2021;12:681175. doi: 10.3389/fmicb.2021.681175. PubMed DOI PMC

Peng W, Wang Y, Fu Y, Deng Z, Lin S, Liang R. Characterization of the tellurite-resistance properties and identification of the core function genes for tellurite resistance in Pseudomonas citronellolis SJTE-3. Microorganisms. 2022;10:95. doi: 10.3390/microorganisms10010095. PubMed DOI PMC

Perna NT, Plunkett G, Burland V, Mau B, Glasner JD, Rose DJ, Mayhew GF, Evans PS, et al. Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature. 2001;409:529–533. doi: 10.1038/35054089. PubMed DOI

Peterhans E, Grob M, Bürge T, Zanoni R. Virus-induced formation of reactive oxygen intermediates in phagocytic cells. Free Radic Res Commun. 1987;3:39–46. doi: 10.3109/10715768709069768. PubMed DOI

Ponnusamy D, Clinkenbear KD. Role of tellurite resistance operon in filamentous growth of Yersinia pestis in macrophages. PLoS One. 2015;10:-–-. doi: 10.1371/journal.pone.0141984. PubMed DOI PMC

Qin Y, Lin G, Chen W, Huang B, Huang W, Yan Q. Flagellar motility contributes to the invasion and survival of Aeromonas hydrophila in Anguilla japonica macrophages. Fish Shellfish Immunol. 2014;39:273–279. doi: 10.1016/j.fsi.2014.05.016. PubMed DOI

Rice-Evans CA, Diplock AT, Symons MCR. Techniques in free radical research. Amsterdam: Elsevier Science; 1991.

Schwarz KB. Oxidative stress during viral infection: a review. Free Radic Biol Med. 1996;21:641–649. doi: 10.1016/0891-5849(96)00131-1. PubMed DOI

Seixas AF, Quendera AP, Sousa JP, Silva AFQ, Arraiano CM, Andrade JM. Bacterial response to oxidative stress and RNA oxidation. Front Genet. 2022;12:821535. doi: 10.3389/fgene.2021.821535. PubMed DOI PMC

Semchyshyn H, Bagnyukova T, Lushchak V. Involvement of soxRS regulon in response of Escherichia coli to oxidative stress induced by hydrogen peroxide. Biochemistry. 2005;70:1238–1244. doi: 10.1007/s10541-005-0253-6. PubMed DOI

Sharma P, Jha AB, Dubey RS, Pessarakli M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot. 2012;2012:-–-. doi: 10.1155/2012/217037. DOI

Silhavy TJ, Berman ML, Enquist LW. Experiments with gene fusions. New York: Cold Spring Harbor Laboratory Press; 1984.

Soltys K, Vavrova S, Budis J, Palkova L, Minarik G, Grones J. Draft genome sequence of Escherichia coli KL53. Genome Announc. 2018;6(-):-–-. doi: 10.1128/genomeA.00220-18. PubMed DOI PMC

Stiefel P, Schmidt-Emrich S, Maniura-Weber K, Ren Q. Critical aspects of using bacterial cell viability assays with the fluorophores SYTO9 and propidium iodide. BMC Microbiol. 2015;15:36. doi: 10.1186/s12866-015-0376-x. PubMed DOI PMC

Sun D, Crowell SA, Harding CM, Malaka De Silva P, Harrison A, Fernando DM, et al. KatG and KatE confer Acinetobacter resistance to hydrogen peroxide but sensitize bacteria to killing by phagocytic respiratory burst. Life Sci. 2016;148:31–40. doi: 10.1016/j.lfs.2016.02.015. PubMed DOI PMC

Tarr PI, Bilge SS, Vary JC, Jelacic S, Habeeb RL, Ward TR, Baylor MR, Besser TE. Iha: a novel Escherichia coli O157:H7 adherence-conferring molecule encoded on a recently acquired chromosomal island of conserved structure. Infect Immun. 2000;68:1400–1407. doi: 10.1128/iai.68.3.1400-1407.2000. PubMed DOI PMC

Taylor DE. Bacterial tellurite resistance. Trends Microbiol. 1999;7:111–115. doi: 10.1016/s0966-842x(99)01454-7. PubMed DOI

Taylor DE, Rooker M, Keelan M, Ng LK, Martin I, Perna NT, et al. Genomic variability of O islands encoding tellurite resistance in enterohemorrhagic Escherichia coli O157:H7 isolates. J Bacteriol. 2002;184:4690–4698. doi: 10.1128/JB.184.17.4690-4698.2002. PubMed DOI PMC

Tremaroli V, Fedi S, Zannoni D. Evidence for a tellurite-dependent generation of reactive oxygen species and absence of a tellurite-mediated adaptive response to oxidative stress in cells of Pseudomonas pseudoalcaligenes KF707. Arch Microbiol. 2007;187:127–135. doi: 10.1007/s00203-006-0179-4. PubMed DOI

Turkovicova L, Smidak R, Jung G, Turna J, Lubec G, Aradska J. Proteomic analysis of the TerC interactome: novel links to tellurite resistance and pathogenicity. J Proteomics. 2016;136:167–173. doi: 10.1016/j.jprot.2016.01.003. PubMed DOI

Valkova D, Valkovicova L, Vavrova S, Kovacova E, Mravec J, Turna J. The contribution of tellurite resistance genes to the fitness of Escherichia coli uropathogenic strains. Cent Eur J Bio. 2007;2:182–191. doi: 10.2478/s11535-007-0019-9. DOI

Vavrova S, Valkova D, Drahovska H, Kokavec J, Mravec J, Turna J. Analysis of the tellurite resistance determinant on the pNT3B derivative of the pTE53 plasmid from uropathogenic Escherichia coli. Biometals. 2006;19:453–460. doi: 10.1007/s10534-005-4862-8. PubMed DOI

Vornhagen J, Bassis CM, Ramakrishnan S, Hein R, Mason S, Bergman Y, Sunshine N, Fan Y, Holmes CL, Timp W, Schatz MC, Young VB, Simner PJ, Bachman MA. A plasmid locus associated with Klebsiella clinical infections encodes a microbiome-dependent gut fitness factor. PLoS Pathog. 2021;17:e1009537. doi: 10.1371/journal.ppat.1009537. PubMed DOI PMC

Walter EG, Taylor DE. Plasmid-mediated resistance to tellurite: expressed and cryptic. Plasmid. 1992;27:52–64. doi: 10.1016/0147-619x(92)90006-v. PubMed DOI

Whelan KF, Colleran E, Taylor DE. Phage inhibition, colicin resistance, and tellurite resistance are encoded by a single cluster of genes on the IncHI2 plasmid R478. J Bacteriol. 1995;177:5016–5027. doi: 10.1128/jb.177.17.5016-5027.1995. PubMed DOI PMC

Xiao J, Chen T, Wang Q, Zhang Y. Comparative analysis of the roles of catalases KatB and KatG in the physiological fitness and pathogenesis of fish pathogen Edwardsiella tarda. Lett Appl Microbiol. 2012;54:425–432. doi: 10.1111/j.1472-765X.2012.03225.x. PubMed DOI

Yin X, Wheatcroft R, Chambers JR, Liu B, Zhu J, Gyles CL. Contributions of O island 48 to adherence of enterohemorrhagic Escherichia coli O157:H7 to epithelial cells in vitro and in ligated pig ileal loops. Appl Environ Microbiol. 2009;75:5779–5786. doi: 10.1128/AEM.00507-09. PubMed DOI PMC

Zhang M, Yan Q, Mao L, Wang S, Huang L, Xu X, et al. KatG plays an important role in Aeromonas hydrophila survival in fish macrophages and escape for further infection. Gene. 2018;672:156–164. doi: 10.1016/j.gene.2018.06.029. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...