Plectin plays a role in the migration and volume regulation of astrocytes: a potential biomarker of glioblastoma
Language English Country England, Great Britain Media electronic
Document type Journal Article
Grant support
P3 310
Javna Agencija za Raziskovalno Dejavnost RS
964997
Horizon 2020
E66C18001240007
PON AIM R&I 2014-2020
PubMed
38263015
PubMed Central
PMC10807171
DOI
10.1186/s12929-024-01002-z
PII: 10.1186/s12929-024-01002-z
Knihovny.cz E-resources
- Keywords
- Aquaporin 4, Astrocyte, Cell migration, Cell volume, Cytoskeleton, Edema, Glioblastoma, Intermediate filaments, Plectin,
- MeSH
- Aquaporin 4 MeSH
- Astrocytes MeSH
- Biomarkers MeSH
- Glioblastoma * MeSH
- Humans MeSH
- Mice MeSH
- Plectin MeSH
- Protein Isoforms MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Aquaporin 4 MeSH
- Biomarkers MeSH
- Plec protein, mouse MeSH Browser
- Plectin MeSH
- Protein Isoforms MeSH
BACKGROUND: The expression of aquaporin 4 (AQP4) and intermediate filament (IF) proteins is altered in malignant glioblastoma (GBM), yet the expression of the major IF-based cytolinker, plectin (PLEC), and its contribution to GBM migration and invasiveness, are unknown. Here, we assessed the contribution of plectin in affecting the distribution of plasmalemmal AQP4 aggregates, migratory properties, and regulation of cell volume in astrocytes. METHODS: In human GBM, the expression of glial fibrillary acidic protein (GFAP), AQP4 and PLEC transcripts was analyzed using publicly available datasets, and the colocalization of PLEC with AQP4 and with GFAP was determined by immunohistochemistry. We performed experiments on wild-type and plectin-deficient primary and immortalized mouse astrocytes, human astrocytes and permanent cell lines (U-251 MG and T98G) derived from a human malignant GBM. The expression of plectin isoforms in mouse astrocytes was assessed by quantitative real-time PCR. Transfection, immunolabeling and confocal microscopy were used to assess plectin-induced alterations in the distribution of the cytoskeleton, the influence of plectin and its isoforms on the abundance and size of plasmalemmal AQP4 aggregates, and the presence of plectin at the plasma membrane. The release of plectin from cells was measured by ELISA. The migration and dynamics of cell volume regulation of immortalized astrocytes were assessed by the wound-healing assay and calcein labeling, respectively. RESULTS: A positive correlation was found between plectin and AQP4 at the level of gene expression and protein localization in tumorous brain samples. Deficiency of plectin led to a decrease in the abundance and size of plasmalemmal AQP4 aggregates and altered distribution and bundling of the cytoskeleton. Astrocytes predominantly expressed P1c, P1e, and P1g plectin isoforms. The predominant plectin isoform associated with plasmalemmal AQP4 aggregates was P1c, which also affected the mobility of astrocytes most prominently. In the absence of plectin, the collective migration of astrocytes was impaired and the dynamics of cytoplasmic volume changes in peripheral cell regions decreased. Plectin's abundance on the plasma membrane surface and its release from cells were increased in the GBM cell lines. CONCLUSIONS: Plectin affects cellular properties that contribute to the pathology of GBM. The observed increase in both cell surface and released plectin levels represents a potential biomarker and therapeutic target in the diagnostics and treatment of GBMs.
Celica Biomedical Ljubljana Slovenia
Department of Biomedical and Biotechnological Sciences University of Catania Catania Italy
Department of Histology and Embryology Faculty of Medicine Masaryk University Brno Czech Republic
See more in PubMed
Zong H, Verhaak RG, Canoll P. The cellular origin for malignant glioma and prospects for clinical advancements. Expert Rev Mol Diagn. 2012;12(4):383–394. doi: 10.1586/erm.12.30. PubMed DOI PMC
Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131(6):803–820. doi: 10.1007/s00401-016-1545-1. PubMed DOI
Vitovcova B, Skarkova V, Rudolf K, Rudolf E. Biology of glioblastoma multiforme-exploration of mitotic catastrophe as a potential treatment modality. Int J Mol Sci. 2020;21(15):5324. doi: 10.3390/ijms21155324. PubMed DOI PMC
van Bodegraven EJ, van Asperen JV, Robe PAJ, Hol EM. Importance of GFAP isoform-specific analyses in astrocytoma. Glia. 2019;67(8):1417–1433. doi: 10.1002/glia.23594. PubMed DOI PMC
Mou K, Chen M, Mao Q, Wang P, Ni R, Xia X, et al. AQP-4 in peritumoral edematous tissue is correlated with the degree of glioma and with expression of VEGF and HIF-alpha. J Neurooncol. 2010;100(3):375–383. doi: 10.1007/s11060-010-0205-x. PubMed DOI
Skalli O, Wilhelmsson U, Orndahl C, Fekete B, Malmgren K, Rydenhag B, et al. Astrocytoma grade IV (glioblastoma multiforme) displays 3 subtypes with unique expression profiles of intermediate filament proteins. Hum Pathol. 2013;44(10):2081–2088. doi: 10.1016/j.humpath.2013.03.013. PubMed DOI
Castañón MJ, Walko G, Winter L, Wiche G. Plectin-intermediate filament partnership in skin, skeletal muscle, and peripheral nerve. Histochem Cell Biol. 2013;140(1):33–53. doi: 10.1007/s00418-013-1102-0. PubMed DOI PMC
Potokar M, Jorgacevski J. Plectin in the central nervous system and a putative role in brain astrocytes. Cells. 2021;10(9):2353. doi: 10.3390/cells10092353. PubMed DOI PMC
Fuchs P, Zörer M, Rezniczek GA, Spazierer D, Oehler S, Castañón MJ, et al. Unusual 5’ transcript complexity of plectin isoforms: novel tissue-specific exons modulate actin binding activity. Hum Mol Genet. 1999;8(13):2461–2472. doi: 10.1093/hmg/8.13.2461. PubMed DOI
Wiche G, Krepler R, Artlieb U, Pytela R, Denk H. Occurrence and immunolocalization of plectin in tissues. J Cell Biol. 1983;97(3):887–901. doi: 10.1083/jcb.97.3.887. PubMed DOI PMC
Errante LD, Wiche G, Shaw G. Distribution of plectin, an intermediate filament-associated protein, in the adult rat central nervous system. J Neurosci Res. 1994;37(4):515–528. doi: 10.1002/jnr.490370411. PubMed DOI
Fuchs P, Zörer M, Reipert S, Rezniczek GA, Propst F, Walko G, et al. Targeted inactivation of a developmentally regulated neural plectin isoform (plectin 1c) in mice leads to reduced motor nerve conduction velocity. J Biol Chem. 2009;284(39):26502–26509. doi: 10.1074/jbc.M109.018150. PubMed DOI PMC
Verkman AS, Ratelade J, Rossi A, Zhang H, Tradtrantip L. Aquaporin-4: orthogonal array assembly, CNS functions, and role in neuromyelitis optica. Acta Pharmacol Sin. 2011;32(6):702–710. doi: 10.1038/aps.2011.27. PubMed DOI PMC
Wiche G, Winter L. Plectin isoforms as organizers of intermediate filament cytoarchitecture. BioArchitecture. 2011;1(1):14–20. doi: 10.4161/bioa.1.1.14630. PubMed DOI PMC
Wolburg H, Noell S, Fallier-Becker P, Mack AF, Wolburg-Buchholz K. The disturbed blood-brain barrier in human glioblastoma. Mol Aspects Med. 2012;33(5–6):579–589. doi: 10.1016/j.mam.2012.02.003. PubMed DOI
Simone L, Pisani F, Mola MG, De Bellis M, Merla G, Micale L, et al. AQP4 aggregation state is a determinant for glioma cell fate. Cancer Res. 2019;79(9):2182–2194. doi: 10.1158/0008-5472.CAN-18-2015. PubMed DOI
Walko G, Wögenstein KL, Winter L, Fischer I, Feltri ML, Wiche G. Stabilization of the dystroglycan complex in Cajal bands of myelinating Schwann cells through plectin-mediated anchorage to vimentin filaments. Glia. 2013;61(8):1274–1287. doi: 10.1002/glia.22514. PubMed DOI
Rezniczek GA, Konieczny P, Nikolic B, Reipert S, Schneller D, Abrahamsberg C, et al. Plectin 1f scaffolding at the sarcolemma of dystrophic (mdx) muscle fibers through multiple interactions with beta-dystroglycan. J Cell Biol. 2007;176(7):965–977. doi: 10.1083/jcb.200604179. PubMed DOI PMC
Solar P, Hendrych M, Barak M, Valekova H, Hermanova M, Jancalek R. Blood-brain barrier alterations and edema formation in different brain mass lesions. Front Cell Neurosci. 2022;16:922181. doi: 10.3389/fncel.2022.922181. PubMed DOI PMC
Perez SM, Brinton LT, Kelly KA. Plectin in cancer: from biomarker to therapeutic target. Cells. 2021;10(9):2246. doi: 10.3390/cells10092246. PubMed DOI PMC
Dasa SSK, Diakova G, Suzuki R, Mills AM, Gutknecht MF, Klibanov AL, et al. Plectin-targeted liposomes enhance the therapeutic efficacy of a PARP inhibitor in the treatment of ovarian cancer. Theranostics. 2018;8(10):2782–2798. doi: 10.7150/thno.23050. PubMed DOI PMC
Shin SJ, Smith JA, Rezniczek GA, Pan S, Chen R, Brentnall TA, et al. Unexpected gain of function for the scaffolding protein plectin due to mislocalization in pancreatic cancer. Proc Natl Acad Sci U S A. 2013;110(48):19414–19419. doi: 10.1073/pnas.1309720110. PubMed DOI PMC
Bausch D, Mino-Kenudson M, Fernandez-Del Castillo C, Warshaw AL, Kelly KA, Thayer SP. Plectin-1 is a biomarker of malignant pancreatic intraductal papillary mucinous neoplasms. J Gastrointest Surg. 2009;13(11):1948–1954. doi: 10.1007/s11605-009-1001-9. PubMed DOI PMC
Kelly KA, Bardeesy N, Anbazhagan R, Gurumurthy S, Berger J, Alencar H, et al. Targeted nanoparticles for imaging incipient pancreatic ductal adenocarcinoma. PLoS Med. 2008;5(4):e85. doi: 10.1371/journal.pmed.0050085. PubMed DOI PMC
Buckup M, Rice MA, Hsu EC, Garcia-Marques F, Liu S, Aslan M, et al. Plectin is a regulator of prostate cancer growth and metastasis. Oncogene. 2021;40(3):663–676. doi: 10.1038/s41388-020-01557-9. PubMed DOI PMC
Katada K, Tomonaga T, Satoh M, Matsushita K, Tonoike Y, Kodera Y, et al. Plectin promotes migration and invasion of cancer cells and is a novel prognostic marker for head and neck squamous cell carcinoma. J Proteomics. 2012;75(6):1803–1815. doi: 10.1016/j.jprot.2011.12.018. PubMed DOI
Raymond AC, Gao B, Girard L, Minna JD, Gomika UD. Unbiased peptoid combinatorial cell screen identifies plectin protein as a potential biomarker for lung cancer stem cells. Sci Rep. 2019;9(1):14954. doi: 10.1038/s41598-019-51004-3. PubMed DOI PMC
Gusev Y, Bhuvaneshwar K, Song L, Zenklusen JC, Fine H, Madhavan S. The REMBRANDT study, a large collection of genomic data from brain cancer patients. Sci Data. 2018;5:180158. doi: 10.1038/sdata.2018.158. PubMed DOI PMC
Andrä K, Lassmann H, Bittner R, Shorny S, Fässler R, Propst F, et al. Targeted inactivation of plectin reveals essential function in maintaining the integrity of skin, muscle, and heart cytoarchitecture. Genes Dev. 1997;11(23):3143–3156. doi: 10.1101/gad.11.23.3143. PubMed DOI PMC
Andrä K, Kornacker I, Jörgl A, Zörer M, Spazierer D, Fuchs P, et al. Plectin-isoform-specific rescue of hemidesmosomal defects in plectin (-/-) keratinocytes. J Invest Dermatol. 2003;120(2):189–197. doi: 10.1046/j.1523-1747.2003.12027.x. PubMed DOI
Wiche G. Plectin-mediated intermediate filament functions: why isoforms matter. Cells. 2021;10(8):2154. doi: 10.3390/cells10082154. PubMed DOI PMC
Aranda PS, LaJoie DM, Jorcyk CL. Bleach gel: a simple agarose gel for analyzing RNA quality. Electrophoresis. 2012;33(2):366–369. doi: 10.1002/elps.201100335. PubMed DOI PMC
Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29(9):e45. doi: 10.1093/nar/29.9.e45. PubMed DOI PMC
Vicario N, Spitale FM, Tibullo D, Giallongo C, Amorini AM, Scandura G, et al. Clobetasol promotes neuromuscular plasticity in mice after motoneuronal loss via sonic hedgehog signaling, immunomodulation and metabolic rebalancing. Cell Death Dis. 2021;12(7):625. doi: 10.1038/s41419-021-03907-1. PubMed DOI PMC
Potokar M, Korva M, Jorgacevski J, Avsic-Zupanc T, Zorec R. Tick-borne encephalitis virus infects rat astrocytes but does not affect their viability. PLoS ONE. 2014;9(1):e86219. doi: 10.1371/journal.pone.0086219. PubMed DOI PMC
Rezniczek GA, Abrahamsberg C, Fuchs P, Spazierer D, Wiche G. Plectin 5’-transcript diversity: short alternative sequences determine stability of gene products, initiation of translation and subcellular localization of isoforms. Hum Mol Genet. 2003;12(23):3181–3194. doi: 10.1093/hmg/ddg345. PubMed DOI
Kostan J, Gregor M, Walko G, Wiche G. Plectin isoform-dependent regulation of keratin-integrin alpha6beta4 anchorage via Ca2+/calmodulin. J Biol Chem. 2009;284(27):18525–18536. doi: 10.1074/jbc.M109.008474. PubMed DOI PMC
Lisjak M, Potokar M, Rituper B, Jorgačevski J, Zorec R. AQP4e-based orthogonal arrays regulate rapid cell volume changes in astrocytes. J Neurosci. 2017;37(44):10748–10756. doi: 10.1523/JNEUROSCI.0776-17.2017. PubMed DOI PMC
Potokar M, Jorgacevski J, Zorec R. Methods for monitoring endocytosis in astrocytes. Methods Mol Biol. 2021;2233:93–100. doi: 10.1007/978-1-0716-1044-2_6. PubMed DOI
Verkman AS, Phuan PW, Asavapanumas N, Tradtrantip L. Biology of AQP4 and anti-AQP4 antibody: therapeutic implications for NMO. Brain Pathol. 2013;23(6):684–695. doi: 10.1111/bpa.12085. PubMed DOI PMC
Kniss DA, Burry RW. Serum and fibroblast growth factor stimulate quiescent astrocytes to re-enter the cell cycle. Brain Res. 1988;439(1–2):281–288. doi: 10.1016/0006-8993(88)91485-0. PubMed DOI
Higaki T. Quantitative evaluation of cytoskeletal organizations by microscopic image analysis. Plant Morphol. 2017;29(1):15–21. doi: 10.5685/plmorphol.29.15. DOI
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC
Jonkman JE, Cathcart JA, Xu F, Bartolini ME, Amon JE, Stevens KM, et al. An introduction to the wound healing assay using live-cell microscopy. Cell Adh Migr. 2014;8(5):440–451. doi: 10.4161/cam.36224. PubMed DOI PMC
Bolte S, Cordelieres FP. A guided tour into subcellular colocalization analysis in light microscopy. J Microsc. 2006;224(Pt 3):213–232. doi: 10.1111/j.1365-2818.2006.01706.x. PubMed DOI
Solenov E, Watanabe H, Manley GT, Verkman AS. Sevenfold-reduced osmotic water permeability in primary astrocyte cultures from AQP-4-deficient mice, measured by a fluorescence quenching method. Am J Physiol Cell Physiol. 2004;286(2):C426–C432. doi: 10.1152/ajpcell.00298.2003. PubMed DOI
Ding T, Gu F, Fu L, Ma YJ. Aquaporin-4 in glioma invasion and an analysis of molecular mechanisms. J Clin Neurosci. 2010;17(11):1359–1361. doi: 10.1016/j.jocn.2010.02.014. PubMed DOI
Jorgacevski J, Zorec R, Potokar M. Insights into cell surface expression, supramolecular organization, and functions of aquaporin 4 isoforms in astrocytes. Cells. 2020;9(12):2622. doi: 10.3390/cells9122622. PubMed DOI PMC
Warth A, Kroger S, Wolburg H. Redistribution of aquaporin-4 in human glioblastoma correlates with loss of agrin immunoreactivity from brain capillary basal laminae. Acta Neuropathol. 2004;107(4):311–318. doi: 10.1007/s00401-003-0812-0. PubMed DOI
Andrä K, Nikolic B, Stöcher M, Drenckhahn D, Wiche G. Not just scaffolding: plectin regulates actin dynamics in cultured cells. Genes Dev. 1998;12(21):3442–3451. doi: 10.1101/gad.12.21.3442. PubMed DOI PMC
Metz T, Harris AW, Adams JM. Absence of p53 allows direct immortalization of hematopoietic cells by the myc and raf oncogenes. Cell. 1995;82(1):29–36. doi: 10.1016/0092-8674(95)90049-7. PubMed DOI
Rezniczek GA, Winter L, Walko G, Wiche G. Functional and genetic analysis of plectin in skin and muscle. Methods Enzymol. 2016;569:235–259. doi: 10.1016/bs.mie.2015.05.003. PubMed DOI
Calhoun MA, Cui Y, Elliott EE, Mo X, Otero JJ, Winter JO. MicroRNA-mRNA interactions at low levels of compressive solid stress implicate mir-548 in increased glioblastoma cell motility. Sci Rep. 2020;10(1):311. doi: 10.1038/s41598-019-56983-x. PubMed DOI PMC
Saadoun S, Papadopoulos MC, Davies DC, Krishna S, Bell BA. Aquaporin-4 expression is increased in oedematous human brain tumours. J Neurol Neurosurg Psychiatry. 2002;72(2):262–265. doi: 10.1136/jnnp.72.2.262. PubMed DOI PMC
Warth A, Simon P, Capper D, Goeppert B, Tabatabai G, Herzog H, et al. Expression pattern of the water channel aquaporin-4 in human gliomas is associated with blood-brain barrier disturbance but not with patient survival. J Neurosci Res. 2007;85(6):1336–1346. doi: 10.1002/jnr.21224. PubMed DOI
Lan YL, Wang X, Lou JC, Ma XC, Zhang B. The potential roles of aquaporin 4 in malignant gliomas. Oncotarget. 2017;8(19):32345–32355. doi: 10.18632/oncotarget.16017. PubMed DOI PMC
Pekny M, Pekna M. Astrocyte reactivity and reactive astrogliosis: costs and benefits. Physiol Rev. 2014;94(4):1077–1098. doi: 10.1152/physrev.00041.2013. PubMed DOI
Potokar M, Morita M, Wiche G, Jorgacevski J. The Diversity of intermediate filaments in astrocytes. Cells. 2020;9(7):1604. doi: 10.3390/cells9071604. PubMed DOI PMC
Stassen O, van Bodegraven EJ, Giuliani F, Moeton M, Kanski R, Sluijs JA, et al. GFAPdelta/GFAPalpha ratio directs astrocytoma gene expression towards a more malignant profile. Oncotarget. 2017;8(50):88104–88121. doi: 10.18632/oncotarget.21540. PubMed DOI PMC
Zhang R, Wang G, Zhang PF, Zhang J, Huang YX, Lu YM, et al. Sanguinarine inhibits growth and invasion of gastric cancer cells via regulation of the DUSP4/ERK pathway. J Cell Mol Med. 2017;21(6):1117–1127. doi: 10.1111/jcmm.13043. PubMed DOI PMC
Smith AJ, Jin BJ, Ratelade J, Verkman AS. Aggregation state determines the localization and function of M1- and M23-aquaporin-4 in astrocytes. J Cell Biol. 2014;204(4):559–573. doi: 10.1083/jcb.201308118. PubMed DOI PMC
Xiong Z, Wang L, Wang Q, Yuan Y. LncRNA MALAT1/miR-129 axis promotes glioma tumorigenesis by targeting SOX2. J Cell Mol Med. 2018;22(8):3929–3940. doi: 10.1111/jcmm.13667. PubMed DOI PMC
Nicchia GP, Mastrototaro M, Rossi A, Pisani F, Tortorella C, Ruggieri M, et al. Aquaporin-4 orthogonal arrays of particles are the target for neuromyelitis optica autoantibodies. Glia. 2009;57(13):1363–1373. doi: 10.1002/glia.20855. PubMed DOI
Nicchia GP, Rossi A, Mola MG, Procino G, Frigeri A, Svelto M. Actin cytoskeleton remodeling governs aquaporin-4 localization in astrocytes. Glia. 2008;56(16):1755–1766. doi: 10.1002/glia.20724. PubMed DOI
Gregor M, Osmanagic-Myers S, Burgstaller G, Wolfram M, Fischer I, Walko G, et al. Mechanosensing through focal adhesion-anchored intermediate filaments. FASEB J. 2014;28(2):715–729. doi: 10.1096/fj.13-231829. PubMed DOI
De Pascalis C, Perez-Gonzalez C, Seetharaman S, Boeda B, Vianay B, Burute M, et al. Intermediate filaments control collective migration by restricting traction forces and sustaining cell-cell contacts. J Cell Biol. 2018;217(9):3031–3044. doi: 10.1083/jcb.201801162. PubMed DOI PMC
Osmanagic-Myers S, Rus S, Wolfram M, Brunner D, Goldmann WH, Bonakdar N, et al. Plectin reinforces vascular integrity by mediating crosstalk between the vimentin and the actin networks. J Cell Sci. 2015;128(22):4138–4150. PubMed PMC
Takawira D, Budinger GR, Hopkinson SB, Jones JC. A dystroglycan/plectin scaffold mediates mechanical pathway bifurcation in lung epithelial cells. J Biol Chem. 2011;286(8):6301–6310. doi: 10.1074/jbc.M110.178988. PubMed DOI PMC
Lavenus SB, Tudor SM, Ullo MF, Vosatka KW, Logue JS. A flexible network of vimentin intermediate filaments promotes migration of amoeboid cancer cells through confined environments. J Biol Chem. 2020;295(19):6700–6709. doi: 10.1074/jbc.RA119.011537. PubMed DOI PMC
Banitalebi S, Skauli N, Geiseler S, Ottersen OP, Amiry-Moghaddam M. Disassembly and mislocalization of AQP4 in incipient scar formation after experimental stroke. Int J Mol Sci. 2022;23(3):1117. doi: 10.3390/ijms23031117. PubMed DOI PMC
Castaneyra-Ruiz L, Gonzalez-Marrero I, Hernandez-Abad LG, Carmona-Calero EM, Pardo MR, Baz-Davila R, et al. AQP4 labels a subpopulation of white matter-dependent glial radial cells affected by pediatric hydrocephalus, and its expression increased in glial microvesicles released to the cerebrospinal fluid in obstructive hydrocephalus. Acta Neuropathol Commun. 2022;10(1):41. doi: 10.1186/s40478-022-01345-4. PubMed DOI PMC
Noell S, Wolburg-Buchholz K, Mack AF, Beedle AM, Satz JS, Campbell KP, et al. Evidence for a role of dystroglycan regulating the membrane architecture of astroglial endfeet. Eur J Neurosci. 2011;33(12):2179–2186. doi: 10.1111/j.1460-9568.2011.07688.x. PubMed DOI PMC
Salman MM, Kitchen P, Halsey A, Wang MX, Tornroth-Horsefield S, Conner AC, et al. Emerging roles for dynamic aquaporin-4 subcellular relocalization in CNS water homeostasis. Brain. 2022;145(1):64–75. doi: 10.1093/brain/awab311. PubMed DOI PMC
Mola MG, Sparaneo A, Gargano CD, Spray DC, Svelto M, Frigeri A, et al. The speed of swelling kinetics modulates cell volume regulation and calcium signaling in astrocytes: A different point of view on the role of aquaporins. Glia. 2016;64(1):139–154. doi: 10.1002/glia.22921. PubMed DOI PMC
Benfenati V, Caprini M, Dovizio M, Mylonakou MN, Ferroni S, Ottersen OP, et al. An aquaporin-4/transient receptor potential vanilloid 4 (AQP4/TRPV4) complex is essential for cell-volume control in astrocytes. Proc Natl Acad Sci U S A. 2011;108(6):2563–2568. doi: 10.1073/pnas.1012867108. PubMed DOI PMC
Pedersen SF, Hoffmann EK, Mills JW. The cytoskeleton and cell volume regulation. Comp Biochem Physiol A Mol Integr Physiol. 2001;130(3):385–399. doi: 10.1016/S1095-6433(01)00429-9. PubMed DOI
Ikenouchi J, Aoki K. A Clockwork Bleb: cytoskeleton, calcium, and cytoplasmic fluidity. FEBS J. 2022;289(24):7907–7917. doi: 10.1111/febs.16220. PubMed DOI
Lie AA, Schröder R, Blümcke I, Magin TM, Wiestler OD, Elger CE. Plectin in the human central nervous system: predominant expression at pia/glia and endothelia/glia interfaces. Acta Neuropathol. 1998;96(3):215–221. doi: 10.1007/s004010050885. PubMed DOI
Reynolds F, Panneer N, Tutino CM, Wu M, Skrabal WR, Moskaluk C, et al. A functional proteomic method for biomarker discovery. PLoS ONE. 2011;6(7):e22471. doi: 10.1371/journal.pone.0022471. PubMed DOI PMC