Molecular modelling of fullerene C60 functionalized by nitric oxide for use in biological environment

. 2024 Jan 31 ; 14 (1) : 2565. [epub] 20240131

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38297014

Grantová podpora
Cooperatio Program, Medical Diagnostics and Basic Medical Sciences (DIAG) Lékařská Fakulta v Plzni, Univerzita Karlova
Cooperatio Program, Medical Diagnostics and Basic Medical Sciences (DIAG) Lékařská Fakulta v Plzni, Univerzita Karlova

Odkazy

PubMed 38297014
PubMed Central PMC10831047
DOI 10.1038/s41598-024-53050-y
PII: 10.1038/s41598-024-53050-y
Knihovny.cz E-zdroje

The unique potential of fullerene C60 for various biological applications has ignited significant interest. However, its inherent non-polarity poses a critical challenge for its effective integration within biological systems. This study delves into the intricate physicochemical characteristics of the innovative [C60 + NO] complex using density functional theory and time-dependent density functional theory. The computational analyses encompass molecular charge, surface electrostatic potential, and dipole moment evaluations. Impressively, the dipole moment of the [C60 + NO] complex significantly increases to 12.92 D. Meticulous surface analysis reveals a subtle interplay between molecular structures, indicating weak interactions. The analysis of the absorption spectrum unveils a noteworthy red-shift of 200 nm subsequent to complex formation. To elucidate the electron transfer mechanisms, we explore photo-induced electron transfer through CAM-B3LYP. This exploration elucidates intricate pathways governing electron transfer, with complementary insights gleaned from Marcus theory's outputs, especially the Gibbs free energy of electron transfer. Changes in the physicochemical properties of approaching C60 and NO molecules reveal interesting results compared to separate molecules. These findings resonate profoundly in the context of potential biological and pharmaceutical utilization. With implications for the biomedical area, the outcomes linked to the [C60 + NO] complex kindle optimism for pioneering biomedical applications.

Zobrazit více v PubMed

Prato M. [60]Fullerene chemistry for materials science applications. J. Mater. Chem. 1997;7:1097–1109. doi: 10.1039/a700080d. DOI

Yang X, Ebrahimi A, Li J, Cui Q. Fullerene-biomolecule conjugates and their biomedicinal applications. Int. J. Nanomed. 2013;9:77–92. PubMed PMC

Yan Y-T, et al. Palladium-catalyzed reaction of [60]fullerene with aroyl compounds via enolate-mediated sp2 C-H bond activation and hydroxylation. J. Org. Chem. 2018;83:672–683. doi: 10.1021/acs.joc.7b02620. PubMed DOI

Lin H-S, Matsuo Y, Wang J-J, Wang G-W. Regioselective acylation and carboxylation of [60]fulleroindoline via electrochemical synthesis. Org. Chem. Front. 2017;4:603–607. doi: 10.1039/C6QO00654J. DOI

Hu X, et al. Amination of [60]fullerene by ammonia and by primary and secondary aliphatic amines—Preparation of amino[60]fullerene peroxides. Chem. Eur. J. 2007;13:1129–1141. doi: 10.1002/chem.200600932. PubMed DOI

Izquierdo M, et al. On the regioselective intramolecular nucleophilic addition of thiols to C60. Eur. J. Org. Chem. 2009;2009:6231–6238. doi: 10.1002/ejoc.200900835. PubMed DOI

Nouraliei M, et al. Fullerene carbon nanostructures for the delivery of phenelzine derivatives as new drugs to inhibit monoamine oxidase enzyme: Molecular docking interactions and density functional theory calculations. Colloids Surf. Physicochem. Eng. Asp. 2023;657:130599. doi: 10.1016/j.colsurfa.2022.130599. DOI

Al Garalleh H. Fullerene derivatives (CN-[OH]β) and single-walled carbon nanotubes modelled as transporters for doxorubicin drug in cancer therapy. Int. J. Mol. Sci. 2022;23:9646. doi: 10.3390/ijms23179646. PubMed DOI PMC

Sharoyko VV, et al. Biocompatibility, antioxidant activity and collagen photoprotection properties of C60 fullerene adduct with L-methionine. Nanomed. Nanotechnol. Biol. Med. 2022;40:102500. doi: 10.1016/j.nano.2021.102500. PubMed DOI

Hou W, et al. Application of fullerenes as photosensitizers for antimicrobial photodynamic inactivation: A review. Front. Microbiol. 2022;13:957698. doi: 10.3389/fmicb.2022.957698. PubMed DOI PMC

He K, et al. Perfluorohexane-encapsulated fullerene nanospheres for dual-modality US/CT imaging and synergistic high-intensity focused ultrasound ablation. Int. J. Nanomed. 2019;14:519–529. doi: 10.2147/IJN.S184579. PubMed DOI PMC

Babuska V, et al. Nanomaterials in bone regeneration. Appl. Sci. 2022;12:6793. doi: 10.3390/app12136793. DOI

Siringan MJ, Dawar A, Zhang J. Interactions between fullerene derivatives and biological systems. Mater. Chem. Front. 2023;7:2153–2174. doi: 10.1039/D3QM00004D. DOI

Aroua S, Schweizer WB, Yamakoshi Y. C60 pyrrolidine bis-carboxylic acid derivative as a versatile precursor for biocompatible fullerenes. Org. Lett. 2014;16:1688–1691. doi: 10.1021/ol500363r. PubMed DOI

Tagmatarchis N, Shinohara H. Fullerenes in medicinal chemistry and their biological applications. Min. Rev. Med. Chem. 2001;1:339–348. PubMed

Sayes CM, et al. The differential cytotoxicity of water-soluble fullerenes. Nano Lett. 2004;4:1881–1887. doi: 10.1021/nl0489586. DOI

Kato S, Aoshima H, Saitoh Y, Miwa N. Highly hydroxylated or γ-cyclodextrin-bicapped water-soluble derivative of fullerene: The antioxidant ability assessed by electron spin resonance method and β-carotene bleaching assay. Bioorg. Med. Chem. Lett. 2009;19:5293–5296. doi: 10.1016/j.bmcl.2009.07.149. PubMed DOI

Panchuk RR, et al. Application of C60 fullerene-doxorubicin complex for tumor cell treatment in vitro and in vivo. J. Biomed. Nanotechnol. 2015;11:1139–1152. doi: 10.1166/jbn.2015.2058. PubMed DOI

Prylutska S, et al. C60 fullerene as synergistic agent in tumor-inhibitory doxorubicin treatment. Drugs RD. 2014;14:333–340. doi: 10.1007/s40268-014-0074-4. PubMed DOI PMC

Hsieh F-Y, et al. Water-soluble fullerene derivatives as brain medicine: surface chemistry determines if they are neuroprotective and antitumor. ACS Appl. Mater. Interfaces. 2017;9:11482–11492. doi: 10.1021/acsami.7b01077. PubMed DOI

Dhawan A, et al. Stable colloidal dispersions of C60 fullerenes in water: Evidence for genotoxicity. Environ. Sci. Technol. 2006;40:7394–7401. doi: 10.1021/es0609708. PubMed DOI

Jia R, Yang X, Li H, Jin B, Xu K. Interaction between cis-2 bis(benzofuro)[60]fullerene derivative and gas molecules of energetic materials (NO, NO2, N2, CO, CO2 and HCN): A DFT-D study. Comput. Theor. Chem. 2022;1212:113690. doi: 10.1016/j.comptc.2022.113690. DOI

Vergara-Reyes HN, Acosta-Alejandro M, Chigo-Anota E. Quantum-mechanical assessment of the adsorption of nitric oxide molecules on the magnetic carbon nitride (C36N24)−fullerene. Struct. Chem. 2021;32:1775–1786. doi: 10.1007/s11224-021-01736-8. DOI

Sicard P, et al. Trends in urban air pollution over the last two decades: A global perspective. Sci. Total Environ. 2023;858:160064. doi: 10.1016/j.scitotenv.2022.160064. PubMed DOI

Anenberg SC, et al. Impacts and mitigation of excess diesel-related NOx emissions in 11 major vehicle markets. Nature. 2017;545:467–471. doi: 10.1038/nature22086. PubMed DOI

Daff S. NO synthase: Structures and mechanisms. Nitric Oxide Biol. Chem. 2010;23:1–11. doi: 10.1016/j.niox.2010.03.001. PubMed DOI

Shabeeh H, et al. Blood pressure in healthy humans is regulated by neuronal NO synthase. Hypertension. 2017;69:970–976. doi: 10.1161/HYPERTENSIONAHA.116.08792. PubMed DOI PMC

Kamendi H, et al. NO differentially regulates neurotransmission to premotor cardiac vagal neurons in the nucleus ambiguus. Hypertension. 2006;48:1137–1142. doi: 10.1161/01.HYP.0000246493.00385.94. PubMed DOI

Danilets MG, et al. Arginase expression and NO production by peritoneal macrophages in TH1 and TH2-dependent immune response. Bull. Exp. Biol. Med. 2007;143:86–89. doi: 10.1007/s10517-007-0087-x. DOI

Sharma JN, Al-Omran A, Parvathy SS. Role of nitric oxide in inflammatory diseases. Inflammopharmacology. 2007;15:252–259. doi: 10.1007/s10787-007-0013-x. PubMed DOI

McCarthy TJ, et al. Inhaled [13N]nitric oxide: A positron emission tomography (PET) study. Nucl. Med. Biol. 1996;23:773–777. doi: 10.1016/0969-8051(96)00072-8. PubMed DOI

Sharma M, Callan E, Konduri GG. Pulmonary vasodilator therapy in persistent pulmonary hypertension of the newborn. Clin. Perinatol. 2022;49:103–125. doi: 10.1016/j.clp.2021.11.010. PubMed DOI

Roubin GS, Harris PJ, Eckhardt I, Hensley W, Kelly DT. Intravenous nitroglycerine in refractory unstable angina pectoris. Aust. N. Z. J. Med. 1982;12:598–602. doi: 10.1111/j.1445-5994.1982.tb02645.x. PubMed DOI

Kuznetsov, A. M. Charge Transfer in Physics, Chemistry and Biology: Physical Mechanisms of Elementary Processes and an Introduction to the Theory. (CRC Press, 1995). 10.1201/9781003077244.

Anderson NA, Lian T. Ultrafast electron transfer at the molecule-semiconductor nanoparticle interface. Annu. Rev. Phys. Chem. 2005;56:491–519. doi: 10.1146/annurev.physchem.55.091602.094347. PubMed DOI

Rostami Z, Hosseinian A, Monfared A. DFT results against experimental data for electronic properties of C60 and C70 fullerene derivatives. J. Mol. Graph. Model. 2018;81:60–67. doi: 10.1016/j.jmgm.2018.02.009. PubMed DOI

Junaid M, Almuqri EA, Liu J, Zhang H. Analyses of the binding between water soluble C60 derivatives and potential drug targets through a molecular docking approach. PLOS ONE. 2016;11:e0147761. doi: 10.1371/journal.pone.0147761. PubMed DOI PMC

Grynyuk II, et al. Combined action of C 60 fullerene with dimethyl-N-(benzoyl)amidophosphate or dimethyl-N-(phenylsulfonyl)amidophosphate on leukemia L1210 cells in silico and in vitro. Mater. Werkst. 2016;47:98–104. doi: 10.1002/mawe.201600471. DOI

Perveen M, et al. A DFT approach for finding therapeutic potential of graphyne as a nanocarrier in the doxorubicin drug delivery to treat cancer. J. Mol. Graph. Model. 2023;124:108537. doi: 10.1016/j.jmgm.2023.108537. PubMed DOI

Perveen M, et al. Controlled supramolecular interactions for targeted release of amiodarone drug through graphyne to treat cardiovascular diseases: An in silico study. J. Mol. Graph. Model. 2023;121:108452. doi: 10.1016/j.jmgm.2023.108452. PubMed DOI

El Mahdy AM. Density functional investigation of CO and NO adsorption on TM-decorated C60 fullerene. Appl. Surf. Sci. 2016;383:353–366. doi: 10.1016/j.apsusc.2016.04.037. DOI

Mahmood MS, Shehzad RA, Iqbal J. Sensing applications of graphitic carbon nitride (C 6 N 8) for nitrogen oxides: A DFT study. Phys. Scr. 2023;98:125001. doi: 10.1088/1402-4896/ad0528. DOI

Taherpour, A. A., Jamshidi, M. & Rezaei, O. DFT and TD-DFT theoretical studies on photo-induced electron transfer process on [Cefamandole].C60 nano-complex. J. Mol. Graph. Model.75, 42–48 (2017). PubMed

Becke, A. D. Density-functional thermochemistry. I. The effect of the exchange-only gradient correction. J. Chem. Phys.96, 2155–2160 (1992).

Rassolov VA, Pople JA, Ratner MA, Windus TL. 6–31G* basis set for atoms K through Zn. J. Chem. Phys. 1998;109:1223–1229. doi: 10.1063/1.476673. DOI

Yoo J, et al. Energy level alignment at C60/DTDCTB/PEDOT:PSS interfaces in organic photovoltaics. Appl. Surf. Sci. 2017;402:41–46. doi: 10.1016/j.apsusc.2017.01.065. DOI

Stanculescu A, et al. MAPLE prepared heterostructures with oligoazomethine: Fullerene derivative mixed layer for photovoltaic applications. Appl. Surf. Sci. 2017;417:183–195. doi: 10.1016/j.apsusc.2017.03.053. DOI

Reimers W, Zubieta C, Baltanás MA, Branda MM. A DFT approach for methanol synthesis via hydrogenation of CO on gallia, ceria and ZnO surfaces. Appl. Surf. Sci. 2018;436:1003–1017. doi: 10.1016/j.apsusc.2017.12.104. DOI

Ullah S, et al. Novel 2-D phosphorene-based drug delivery system for anti-HIV zidovudine drug to enhance the therapeutic effects: A first-principles based study. Comput. Theor. Chem. 2023;1229:114331. doi: 10.1016/j.comptc.2023.114331. DOI

Arabieh M, Azar YT. Adsorption modes of molecular iodine on defected boron nitrides: A DFT study. Appl. Surf. Sci. 2018;434:604–612. doi: 10.1016/j.apsusc.2017.10.232. DOI

Lu T, Chen F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012;33:580–592. doi: 10.1002/jcc.22885. PubMed DOI

Li F, Ramage D, Lannin JS, Conceicao J. Radial distribution function of C 60: Structure of fullerene. Phys. Rev. B. 1991;44:13167–13170. doi: 10.1103/PhysRevB.44.13167. PubMed DOI

Szala-Bilnik, J., Costa Gomes, M. F. & Pádua, A. A. H. Solvation of C60 fullerene and C60 F48 fluorinated fullerene in molecular and ionic liquids. J. Phys. Chem. C120, 19396–19408 (2016).

Taherpour AA, Shahri Z, Rezaei O, Jamshidi M, Fellowes T. Adsorption, intercalation and sensing of helium on yttrium functionalized open edge boron nitride: A first principle DFT and TDDFT study. Chem. Phys. Lett. 2018;691:231–237. doi: 10.1016/j.cplett.2017.11.033. DOI

Taherpour AA, et al. First principles studies of electronic and optical properties of helium adsorption on Sc-doped BN monolayer. J. Iran. Chem. Soc. 2015;12:1983–1990. doi: 10.1007/s13738-015-0672-2. DOI

Marković S, Tošović J. Application of time-dependent density functional and natural bond orbital theories to the UV–vis absorption spectra of some phenolic compounds. J. Phys. Chem. A. 2015;119:9352–9362. doi: 10.1021/acs.jpca.5b05129. PubMed DOI

Yanai T, Tew DP, Handy NC. A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP) Chem. Phys. Lett. 2004;393:51–57. doi: 10.1016/j.cplett.2004.06.011. DOI

Komjáti B, et al. Systematic study on the TD-DFT calculated electronic circular dichroism spectra of chiral aromatic nitro compounds: A comparison of B3LYP and CAM-B3LYP. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2016;155:95–102. doi: 10.1016/j.saa.2015.11.002. PubMed DOI

Grabarek D, Andruniów T. Assessment of functionals for TDDFT calculations of one- and two-photon absorption properties of neutral and anionic fluorescent proteins chromophores. J. Chem. Theory Comput. 2019;15:490–508. doi: 10.1021/acs.jctc.8b00769. PubMed DOI

Taherpour AA, Jamshidi M, Rezaei O. Recognition of switching on or off fluorescence emission spectrum on the Schiff-bases as a Mg2+ chemosensor: A first principle DFT and TD-DFT study. J. Mol. Struct. 2017;1147:815–820. doi: 10.1016/j.molstruc.2017.06.069. DOI

Frisch, M. J. et al. Gaussian 03, Revision C. 02. (2004).

Humphrey W, Dalke A, Schulten KVMD. Visual molecular dynamics. J. Mol. Graph. 1996;14:33–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI

O’boyle, N. M., Tenderholt, A. L. & Langner, K. M. cclib: A library for package‐independent computational chemistry algorithms. J. Comput. Chem.29, 839–845 (2008). PubMed

Marcus RA. Chemical and electrochemical electron-transfer theory. Annu. Rev. Phys. Chem. 1964;15:155–196. doi: 10.1146/annurev.pc.15.100164.001103. DOI

Taherpour, A. A., Rizehbandi, M., Jahanian, F., Naghibi, E. & Mahdizadeh, N.-A. Theoretical study of electron transfer process between fullerenes and neurotransmitters; acetylcholine, dopamine, serotonin and epinephrine in nanostructures [neurotransmitters].C n complexes. J. Chem. Biol.9, 19–29 (2015). PubMed PMC

Rafique J, et al. Drug delivery of carvedilol (cardiovascular drug) using phosphorene as a drug carrier: a DFT study. J. Taibah Univ. Sci. 2022;16:31–46. doi: 10.1080/16583655.2021.2021789. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...