Molecular modelling of fullerene C60 functionalized by nitric oxide for use in biological environment
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Cooperatio Program, Medical Diagnostics and Basic Medical Sciences (DIAG)
Lékařská Fakulta v Plzni, Univerzita Karlova
Cooperatio Program, Medical Diagnostics and Basic Medical Sciences (DIAG)
Lékařská Fakulta v Plzni, Univerzita Karlova
PubMed
38297014
PubMed Central
PMC10831047
DOI
10.1038/s41598-024-53050-y
PII: 10.1038/s41598-024-53050-y
Knihovny.cz E-zdroje
- MeSH
- fullereny * chemie MeSH
- molekulární modely MeSH
- molekulární struktura MeSH
- oxid dusnatý MeSH
- transport elektronů MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fullereny * MeSH
- oxid dusnatý MeSH
The unique potential of fullerene C60 for various biological applications has ignited significant interest. However, its inherent non-polarity poses a critical challenge for its effective integration within biological systems. This study delves into the intricate physicochemical characteristics of the innovative [C60 + NO] complex using density functional theory and time-dependent density functional theory. The computational analyses encompass molecular charge, surface electrostatic potential, and dipole moment evaluations. Impressively, the dipole moment of the [C60 + NO] complex significantly increases to 12.92 D. Meticulous surface analysis reveals a subtle interplay between molecular structures, indicating weak interactions. The analysis of the absorption spectrum unveils a noteworthy red-shift of 200 nm subsequent to complex formation. To elucidate the electron transfer mechanisms, we explore photo-induced electron transfer through CAM-B3LYP. This exploration elucidates intricate pathways governing electron transfer, with complementary insights gleaned from Marcus theory's outputs, especially the Gibbs free energy of electron transfer. Changes in the physicochemical properties of approaching C60 and NO molecules reveal interesting results compared to separate molecules. These findings resonate profoundly in the context of potential biological and pharmaceutical utilization. With implications for the biomedical area, the outcomes linked to the [C60 + NO] complex kindle optimism for pioneering biomedical applications.
Chemistry Department Faculty of Chemistry Razi University Kermanshah Iran
Department of Anatomy Faculty of Medicine in Pilsen Charles University 323 00 Pilsen Czech Republic
Young Researchers and Elite Club Kermanshah Branch Islamic Azad University Kermanshah Iran
Zobrazit více v PubMed
Prato M. [60]Fullerene chemistry for materials science applications. J. Mater. Chem. 1997;7:1097–1109. doi: 10.1039/a700080d. DOI
Yang X, Ebrahimi A, Li J, Cui Q. Fullerene-biomolecule conjugates and their biomedicinal applications. Int. J. Nanomed. 2013;9:77–92. PubMed PMC
Yan Y-T, et al. Palladium-catalyzed reaction of [60]fullerene with aroyl compounds via enolate-mediated sp2 C-H bond activation and hydroxylation. J. Org. Chem. 2018;83:672–683. doi: 10.1021/acs.joc.7b02620. PubMed DOI
Lin H-S, Matsuo Y, Wang J-J, Wang G-W. Regioselective acylation and carboxylation of [60]fulleroindoline via electrochemical synthesis. Org. Chem. Front. 2017;4:603–607. doi: 10.1039/C6QO00654J. DOI
Hu X, et al. Amination of [60]fullerene by ammonia and by primary and secondary aliphatic amines—Preparation of amino[60]fullerene peroxides. Chem. Eur. J. 2007;13:1129–1141. doi: 10.1002/chem.200600932. PubMed DOI
Izquierdo M, et al. On the regioselective intramolecular nucleophilic addition of thiols to C60. Eur. J. Org. Chem. 2009;2009:6231–6238. doi: 10.1002/ejoc.200900835. PubMed DOI
Nouraliei M, et al. Fullerene carbon nanostructures for the delivery of phenelzine derivatives as new drugs to inhibit monoamine oxidase enzyme: Molecular docking interactions and density functional theory calculations. Colloids Surf. Physicochem. Eng. Asp. 2023;657:130599. doi: 10.1016/j.colsurfa.2022.130599. DOI
Al Garalleh H. Fullerene derivatives (CN-[OH]β) and single-walled carbon nanotubes modelled as transporters for doxorubicin drug in cancer therapy. Int. J. Mol. Sci. 2022;23:9646. doi: 10.3390/ijms23179646. PubMed DOI PMC
Sharoyko VV, et al. Biocompatibility, antioxidant activity and collagen photoprotection properties of C60 fullerene adduct with L-methionine. Nanomed. Nanotechnol. Biol. Med. 2022;40:102500. doi: 10.1016/j.nano.2021.102500. PubMed DOI
Hou W, et al. Application of fullerenes as photosensitizers for antimicrobial photodynamic inactivation: A review. Front. Microbiol. 2022;13:957698. doi: 10.3389/fmicb.2022.957698. PubMed DOI PMC
He K, et al. Perfluorohexane-encapsulated fullerene nanospheres for dual-modality US/CT imaging and synergistic high-intensity focused ultrasound ablation. Int. J. Nanomed. 2019;14:519–529. doi: 10.2147/IJN.S184579. PubMed DOI PMC
Babuska V, et al. Nanomaterials in bone regeneration. Appl. Sci. 2022;12:6793. doi: 10.3390/app12136793. DOI
Siringan MJ, Dawar A, Zhang J. Interactions between fullerene derivatives and biological systems. Mater. Chem. Front. 2023;7:2153–2174. doi: 10.1039/D3QM00004D. DOI
Aroua S, Schweizer WB, Yamakoshi Y. C60 pyrrolidine bis-carboxylic acid derivative as a versatile precursor for biocompatible fullerenes. Org. Lett. 2014;16:1688–1691. doi: 10.1021/ol500363r. PubMed DOI
Tagmatarchis N, Shinohara H. Fullerenes in medicinal chemistry and their biological applications. Min. Rev. Med. Chem. 2001;1:339–348. PubMed
Sayes CM, et al. The differential cytotoxicity of water-soluble fullerenes. Nano Lett. 2004;4:1881–1887. doi: 10.1021/nl0489586. DOI
Kato S, Aoshima H, Saitoh Y, Miwa N. Highly hydroxylated or γ-cyclodextrin-bicapped water-soluble derivative of fullerene: The antioxidant ability assessed by electron spin resonance method and β-carotene bleaching assay. Bioorg. Med. Chem. Lett. 2009;19:5293–5296. doi: 10.1016/j.bmcl.2009.07.149. PubMed DOI
Panchuk RR, et al. Application of C60 fullerene-doxorubicin complex for tumor cell treatment in vitro and in vivo. J. Biomed. Nanotechnol. 2015;11:1139–1152. doi: 10.1166/jbn.2015.2058. PubMed DOI
Prylutska S, et al. C60 fullerene as synergistic agent in tumor-inhibitory doxorubicin treatment. Drugs RD. 2014;14:333–340. doi: 10.1007/s40268-014-0074-4. PubMed DOI PMC
Hsieh F-Y, et al. Water-soluble fullerene derivatives as brain medicine: surface chemistry determines if they are neuroprotective and antitumor. ACS Appl. Mater. Interfaces. 2017;9:11482–11492. doi: 10.1021/acsami.7b01077. PubMed DOI
Dhawan A, et al. Stable colloidal dispersions of C60 fullerenes in water: Evidence for genotoxicity. Environ. Sci. Technol. 2006;40:7394–7401. doi: 10.1021/es0609708. PubMed DOI
Jia R, Yang X, Li H, Jin B, Xu K. Interaction between cis-2 bis(benzofuro)[60]fullerene derivative and gas molecules of energetic materials (NO, NO2, N2, CO, CO2 and HCN): A DFT-D study. Comput. Theor. Chem. 2022;1212:113690. doi: 10.1016/j.comptc.2022.113690. DOI
Vergara-Reyes HN, Acosta-Alejandro M, Chigo-Anota E. Quantum-mechanical assessment of the adsorption of nitric oxide molecules on the magnetic carbon nitride (C36N24)−fullerene. Struct. Chem. 2021;32:1775–1786. doi: 10.1007/s11224-021-01736-8. DOI
Sicard P, et al. Trends in urban air pollution over the last two decades: A global perspective. Sci. Total Environ. 2023;858:160064. doi: 10.1016/j.scitotenv.2022.160064. PubMed DOI
Anenberg SC, et al. Impacts and mitigation of excess diesel-related NOx emissions in 11 major vehicle markets. Nature. 2017;545:467–471. doi: 10.1038/nature22086. PubMed DOI
Daff S. NO synthase: Structures and mechanisms. Nitric Oxide Biol. Chem. 2010;23:1–11. doi: 10.1016/j.niox.2010.03.001. PubMed DOI
Shabeeh H, et al. Blood pressure in healthy humans is regulated by neuronal NO synthase. Hypertension. 2017;69:970–976. doi: 10.1161/HYPERTENSIONAHA.116.08792. PubMed DOI PMC
Kamendi H, et al. NO differentially regulates neurotransmission to premotor cardiac vagal neurons in the nucleus ambiguus. Hypertension. 2006;48:1137–1142. doi: 10.1161/01.HYP.0000246493.00385.94. PubMed DOI
Danilets MG, et al. Arginase expression and NO production by peritoneal macrophages in TH1 and TH2-dependent immune response. Bull. Exp. Biol. Med. 2007;143:86–89. doi: 10.1007/s10517-007-0087-x. DOI
Sharma JN, Al-Omran A, Parvathy SS. Role of nitric oxide in inflammatory diseases. Inflammopharmacology. 2007;15:252–259. doi: 10.1007/s10787-007-0013-x. PubMed DOI
McCarthy TJ, et al. Inhaled [13N]nitric oxide: A positron emission tomography (PET) study. Nucl. Med. Biol. 1996;23:773–777. doi: 10.1016/0969-8051(96)00072-8. PubMed DOI
Sharma M, Callan E, Konduri GG. Pulmonary vasodilator therapy in persistent pulmonary hypertension of the newborn. Clin. Perinatol. 2022;49:103–125. doi: 10.1016/j.clp.2021.11.010. PubMed DOI
Roubin GS, Harris PJ, Eckhardt I, Hensley W, Kelly DT. Intravenous nitroglycerine in refractory unstable angina pectoris. Aust. N. Z. J. Med. 1982;12:598–602. doi: 10.1111/j.1445-5994.1982.tb02645.x. PubMed DOI
Kuznetsov, A. M. Charge Transfer in Physics, Chemistry and Biology: Physical Mechanisms of Elementary Processes and an Introduction to the Theory. (CRC Press, 1995). 10.1201/9781003077244.
Anderson NA, Lian T. Ultrafast electron transfer at the molecule-semiconductor nanoparticle interface. Annu. Rev. Phys. Chem. 2005;56:491–519. doi: 10.1146/annurev.physchem.55.091602.094347. PubMed DOI
Rostami Z, Hosseinian A, Monfared A. DFT results against experimental data for electronic properties of C60 and C70 fullerene derivatives. J. Mol. Graph. Model. 2018;81:60–67. doi: 10.1016/j.jmgm.2018.02.009. PubMed DOI
Junaid M, Almuqri EA, Liu J, Zhang H. Analyses of the binding between water soluble C60 derivatives and potential drug targets through a molecular docking approach. PLOS ONE. 2016;11:e0147761. doi: 10.1371/journal.pone.0147761. PubMed DOI PMC
Grynyuk II, et al. Combined action of C 60 fullerene with dimethyl-N-(benzoyl)amidophosphate or dimethyl-N-(phenylsulfonyl)amidophosphate on leukemia L1210 cells in silico and in vitro. Mater. Werkst. 2016;47:98–104. doi: 10.1002/mawe.201600471. DOI
Perveen M, et al. A DFT approach for finding therapeutic potential of graphyne as a nanocarrier in the doxorubicin drug delivery to treat cancer. J. Mol. Graph. Model. 2023;124:108537. doi: 10.1016/j.jmgm.2023.108537. PubMed DOI
Perveen M, et al. Controlled supramolecular interactions for targeted release of amiodarone drug through graphyne to treat cardiovascular diseases: An in silico study. J. Mol. Graph. Model. 2023;121:108452. doi: 10.1016/j.jmgm.2023.108452. PubMed DOI
El Mahdy AM. Density functional investigation of CO and NO adsorption on TM-decorated C60 fullerene. Appl. Surf. Sci. 2016;383:353–366. doi: 10.1016/j.apsusc.2016.04.037. DOI
Mahmood MS, Shehzad RA, Iqbal J. Sensing applications of graphitic carbon nitride (C 6 N 8) for nitrogen oxides: A DFT study. Phys. Scr. 2023;98:125001. doi: 10.1088/1402-4896/ad0528. DOI
Taherpour, A. A., Jamshidi, M. & Rezaei, O. DFT and TD-DFT theoretical studies on photo-induced electron transfer process on [Cefamandole].C60 nano-complex. J. Mol. Graph. Model.75, 42–48 (2017). PubMed
Becke, A. D. Density-functional thermochemistry. I. The effect of the exchange-only gradient correction. J. Chem. Phys.96, 2155–2160 (1992).
Rassolov VA, Pople JA, Ratner MA, Windus TL. 6–31G* basis set for atoms K through Zn. J. Chem. Phys. 1998;109:1223–1229. doi: 10.1063/1.476673. DOI
Yoo J, et al. Energy level alignment at C60/DTDCTB/PEDOT:PSS interfaces in organic photovoltaics. Appl. Surf. Sci. 2017;402:41–46. doi: 10.1016/j.apsusc.2017.01.065. DOI
Stanculescu A, et al. MAPLE prepared heterostructures with oligoazomethine: Fullerene derivative mixed layer for photovoltaic applications. Appl. Surf. Sci. 2017;417:183–195. doi: 10.1016/j.apsusc.2017.03.053. DOI
Reimers W, Zubieta C, Baltanás MA, Branda MM. A DFT approach for methanol synthesis via hydrogenation of CO on gallia, ceria and ZnO surfaces. Appl. Surf. Sci. 2018;436:1003–1017. doi: 10.1016/j.apsusc.2017.12.104. DOI
Ullah S, et al. Novel 2-D phosphorene-based drug delivery system for anti-HIV zidovudine drug to enhance the therapeutic effects: A first-principles based study. Comput. Theor. Chem. 2023;1229:114331. doi: 10.1016/j.comptc.2023.114331. DOI
Arabieh M, Azar YT. Adsorption modes of molecular iodine on defected boron nitrides: A DFT study. Appl. Surf. Sci. 2018;434:604–612. doi: 10.1016/j.apsusc.2017.10.232. DOI
Lu T, Chen F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012;33:580–592. doi: 10.1002/jcc.22885. PubMed DOI
Li F, Ramage D, Lannin JS, Conceicao J. Radial distribution function of C 60: Structure of fullerene. Phys. Rev. B. 1991;44:13167–13170. doi: 10.1103/PhysRevB.44.13167. PubMed DOI
Szala-Bilnik, J., Costa Gomes, M. F. & Pádua, A. A. H. Solvation of C60 fullerene and C60 F48 fluorinated fullerene in molecular and ionic liquids. J. Phys. Chem. C120, 19396–19408 (2016).
Taherpour AA, Shahri Z, Rezaei O, Jamshidi M, Fellowes T. Adsorption, intercalation and sensing of helium on yttrium functionalized open edge boron nitride: A first principle DFT and TDDFT study. Chem. Phys. Lett. 2018;691:231–237. doi: 10.1016/j.cplett.2017.11.033. DOI
Taherpour AA, et al. First principles studies of electronic and optical properties of helium adsorption on Sc-doped BN monolayer. J. Iran. Chem. Soc. 2015;12:1983–1990. doi: 10.1007/s13738-015-0672-2. DOI
Marković S, Tošović J. Application of time-dependent density functional and natural bond orbital theories to the UV–vis absorption spectra of some phenolic compounds. J. Phys. Chem. A. 2015;119:9352–9362. doi: 10.1021/acs.jpca.5b05129. PubMed DOI
Yanai T, Tew DP, Handy NC. A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP) Chem. Phys. Lett. 2004;393:51–57. doi: 10.1016/j.cplett.2004.06.011. DOI
Komjáti B, et al. Systematic study on the TD-DFT calculated electronic circular dichroism spectra of chiral aromatic nitro compounds: A comparison of B3LYP and CAM-B3LYP. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2016;155:95–102. doi: 10.1016/j.saa.2015.11.002. PubMed DOI
Grabarek D, Andruniów T. Assessment of functionals for TDDFT calculations of one- and two-photon absorption properties of neutral and anionic fluorescent proteins chromophores. J. Chem. Theory Comput. 2019;15:490–508. doi: 10.1021/acs.jctc.8b00769. PubMed DOI
Taherpour AA, Jamshidi M, Rezaei O. Recognition of switching on or off fluorescence emission spectrum on the Schiff-bases as a Mg2+ chemosensor: A first principle DFT and TD-DFT study. J. Mol. Struct. 2017;1147:815–820. doi: 10.1016/j.molstruc.2017.06.069. DOI
Frisch, M. J. et al. Gaussian 03, Revision C. 02. (2004).
Humphrey W, Dalke A, Schulten KVMD. Visual molecular dynamics. J. Mol. Graph. 1996;14:33–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI
O’boyle, N. M., Tenderholt, A. L. & Langner, K. M. cclib: A library for package‐independent computational chemistry algorithms. J. Comput. Chem.29, 839–845 (2008). PubMed
Marcus RA. Chemical and electrochemical electron-transfer theory. Annu. Rev. Phys. Chem. 1964;15:155–196. doi: 10.1146/annurev.pc.15.100164.001103. DOI
Taherpour, A. A., Rizehbandi, M., Jahanian, F., Naghibi, E. & Mahdizadeh, N.-A. Theoretical study of electron transfer process between fullerenes and neurotransmitters; acetylcholine, dopamine, serotonin and epinephrine in nanostructures [neurotransmitters].C n complexes. J. Chem. Biol.9, 19–29 (2015). PubMed PMC
Rafique J, et al. Drug delivery of carvedilol (cardiovascular drug) using phosphorene as a drug carrier: a DFT study. J. Taibah Univ. Sci. 2022;16:31–46. doi: 10.1080/16583655.2021.2021789. DOI