The role of extracellular vesicle fusion with target cells in triggering systemic inflammation
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20180506 and 202110908
Crafoordska Stiftelsen (Crafoord Foundation)
2019-01086
Vetenskapsrådet (Swedish Research Council)
PubMed
38326335
PubMed Central
PMC10850166
DOI
10.1038/s41467-024-45125-1
PII: 10.1038/s41467-024-45125-1
Knihovny.cz E-zdroje
- MeSH
- biologický transport MeSH
- extracelulární vezikuly * metabolismus MeSH
- myši MeSH
- NF-kappa B * metabolismus MeSH
- signální transdukce MeSH
- zánět patologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- NF-kappa B * MeSH
Extracellular vesicles (EVs) play a crucial role in intercellular communication by transferring bioactive molecules from donor to recipient cells. As a result, EV fusion leads to the modulation of cellular functions and has an impact on both physiological and pathological processes in the recipient cell. This study explores the impact of EV fusion on cellular responses to inflammatory signaling. Our findings reveal that fusion renders non-responsive cells susceptible to inflammatory signaling, as evidenced by increased NF-κB activation and the release of inflammatory mediators. Syntaxin-binding protein 1 is essential for the merge and activation of intracellular signaling. Subsequent analysis show that EVs transfer their functionally active receptors to target cells, making them prone to an otherwise unresponsive state. EVs in complex with their agonist, require no further stimulation of the target cells to trigger mobilization of NF-κB. While receptor antagonists were unable to inhibit NF-κB activation, blocking of the fusion between EVs and their target cells with heparin mitigated inflammation in mice challenged with EVs.
Center for Systems Neuroscience Hannover Germany
Department of Viroscience Erasmus Medical Center Rotterdam the Netherlands
Division of Infection Medicine Department of Clinical Sciences Lund University Lund Sweden
Division of Oncology and Pathology Lund Department of Clinical Sciences Lund University Lund Sweden
Section of Surgery Department of Clinical Sciences Lund University Malmö Sweden
SMATHERIA gGmbH Non Profit Biomedical Research Institute Hannover Germany
Zobrazit více v PubMed
Talamonti G, D’Aliberti G, Cenzato M. Aulus cornelius celsus and the head injuries. World Neurosurg. 2020;133:127–134. doi: 10.1016/j.wneu.2019.09.119. PubMed DOI
Huber-Lang M, Lambris JD, Ward PA. Innate immune responses to trauma. Nat. Immunol. 2018;19:327–341. doi: 10.1038/s41590-018-0064-8. PubMed DOI PMC
Chousterman BG, Swirski FK, Weber GF. Cytokine storm and sepsis disease pathogenesis. Semin. Immunopathol. 2017;39:517–528. doi: 10.1007/s00281-017-0639-8. PubMed DOI
Hoesel B, Schmid JA. The complexity of NF-kappaB signaling in inflammation and cancer. Mol. Cancer. 2013;12:86. doi: 10.1186/1476-4598-12-86. PubMed DOI PMC
Frohlich, M. et al. Temporal phenotyping of circulating microparticles after trauma: a prospective cohort study. Scand. J. Trauma Resusc. Emerg. Med26, 33 (2018). PubMed PMC
Boscolo A, et al. Levels of circulating microparticles in septic shock and sepsis-related complications: a case-control study. Minerva Anestesiol. 2019;85:625–634. doi: 10.23736/S0375-9393.18.12782-9. PubMed DOI
Sabatier F, et al. Interaction of endothelial microparticles with monocytic cells in vitro induces tissue factor-dependent procoagulant activity. Blood. 2002;99:3962–3970. doi: 10.1182/blood.V99.11.3962. PubMed DOI
Burger D, et al. Microparticles: biomarkers and beyond. Clin. Sci. (Lond.) 2013;124:423–441. doi: 10.1042/CS20120309. PubMed DOI
Cognasse F, et al. The role of microparticles in inflammation and transfusion: A concise review. Transfus. Apher. Sci. 2015;53:159–167. doi: 10.1016/j.transci.2015.10.013. PubMed DOI
Rizo J, Sudhof TC. Snares and Munc18 in synaptic vesicle fusion. Nat. Rev. Neurosci. 2002;3:641–653. doi: 10.1038/nrn898. PubMed DOI
Atai NA, et al. Heparin blocks transfer of extracellular vesicles between donor and recipient cells. J. Neurooncol. 2013;115:343–351. doi: 10.1007/s11060-013-1235-y. PubMed DOI PMC
Shen C, et al. The trans-SNARE-regulating function of Munc18-1 is essential to synaptic exocytosis. Nat. Commun. 2015;6:8852. doi: 10.1038/ncomms9852. PubMed DOI PMC
Yu H, et al. SNARE zippering requires activation by SNARE-like peptides in Sec1/Munc18 proteins. Proc. Natl Acad. Sci. USA. 2018;115:E8421–e8429. doi: 10.1073/pnas.1802645115. PubMed DOI PMC
Mause SF, Weber C. Microparticles: protagonists of a novel communication network for intercellular information exchange. Circ. Res. 2010;107:1047–1057. doi: 10.1161/CIRCRESAHA.110.226456. PubMed DOI
De Paoli SH, et al. Dissecting the biochemical architecture and morphological release pathways of the human platelet extracellular vesiculome. Cell Mol. Life Sci. 2018;75:3781–3801. doi: 10.1007/s00018-018-2771-6. PubMed DOI PMC
Chimen M, et al. Appropriation of GPIbalpha from platelet-derived extracellular vesicles supports monocyte recruitment in systemic inflammation. Haematologica. 2020;105:1248–1261. doi: 10.3324/haematol.2018.215145. PubMed DOI PMC
Prescott JA, Mitchell JP, Cook SJ. Inhibitory feedback control of NF-kappaB signalling in health and disease. Biochem J. 2021;478:2619–2664. doi: 10.1042/BCJ20210139. PubMed DOI PMC
Kadkova A, Radecke J, Sorensen JB. The SNAP-25 Protein Family. Neuroscience. 2019;420:50–71. doi: 10.1016/j.neuroscience.2018.09.020. PubMed DOI
Oehmcke S, et al. Stimulation of blood mononuclear cells with bacterial virulence factors leads to the release of pro-coagulant and pro-inflammatory microparticles. Cell Microbiol. 2012;14:107–119. doi: 10.1111/j.1462-5822.2011.01705.x. PubMed DOI
Verhage M, et al. Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science. 2000;287:864–869. doi: 10.1126/science.287.5454.864. PubMed DOI
Wada K, Hosokawa K, Ito Y, Maeda M. Effects of ROCK inhibitor Y-27632 on cell fusion through a microslit. Biotechnol. Bioeng. 2015;112:2334–2342. doi: 10.1002/bit.25641. PubMed DOI
Futosi K, Fodor S, Mocsai A. Neutrophil cell surface receptors and their intracellular signal transduction pathways. Int. Immunopharmacol. 2013;17:638–650. doi: 10.1016/j.intimp.2013.06.034. PubMed DOI PMC
Verstrepen L, et al. TLR-4, IL-1R and TNF-R signaling to NF-kappaB: variations on a common theme. Cell Mol. Life Sci. 2008;65:2964–2978. doi: 10.1007/s00018-008-8064-8. PubMed DOI PMC
Casella JF, Flanagan MD, Lin S. Cytochalasin D inhibits actin polymerization and induces depolymerization of actin filaments formed during platelet shape change. Nature. 1981;293:302–305. doi: 10.1038/293302a0. PubMed DOI
Wen PJ, et al. Actin dynamics provides membrane tension to merge fusing vesicles into the plasma membrane. Nat. Commun. 2016;7:12604. doi: 10.1038/ncomms12604. PubMed DOI PMC
Kowal J, Tkach M, Thery C. Biogenesis and secretion of exosomes. Curr. Opin. Cell Biol. 2014;29:116–125. doi: 10.1016/j.ceb.2014.05.004. PubMed DOI
Picca A, et al. Extracellular vesicles and damage-associated molecular patterns: a Pandora’s box in health and disease. Front. Immunol. 2020;11:601740. doi: 10.3389/fimmu.2020.601740. PubMed DOI PMC
Hung Y, et al. The exosomal compartment protects epidermal growth factor receptor from small molecule inhibitors. Biochem. Biophys. Res Commun. 2019;510:42–47. doi: 10.1016/j.bbrc.2018.12.187. PubMed DOI
Jiang CY, et al. The potential role of circulating exosomes in protecting myocardial injury in acute myocardial infarction via regulating miR-190a-3p/CXCR4/CXCL12 pathway. J. Bioenerg. Biomembr. 2022;54:175–189. doi: 10.1007/s10863-022-09944-5. PubMed DOI
Zeng F, Morelli AE. Extracellular vesicle-mediated MHC cross-dressing in immune homeostasis, transplantation, infectious diseases, and cancer. Semin Immunopathol. 2018;40:477–490. doi: 10.1007/s00281-018-0679-8. PubMed DOI PMC
Johnston A, et al. A systematic review of clinical practice guidelines on the use of low molecular weight heparin and fondaparinux for the treatment and prevention of venous thromboembolism: Implications for research and policy decision-making. PLoS One. 2018;13:e0207410. doi: 10.1371/journal.pone.0207410. PubMed DOI PMC
Kearon C, et al. Antithrombotic therapy for VTE disease: antithrombotic therapy and prevention of thrombosis, 9th ed: American College of American College of chest physicians evidence-based clinical practice guidelines. Chest. 2012;141:e419S–e496S. doi: 10.1378/chest.11-2301. PubMed DOI PMC
Hull RD. Treatment of pulmonary embolism: The use of low-molecular-weight heparin in the inpatient and outpatient settings. Thromb. Haemost. 2008;99:502–510. doi: 10.1160/TH07-08-0500. PubMed DOI
Shore-Lesserson L, et al. The society of thoracic surgeons, the society of cardiovascular anesthesiologists, and the american society of extracorporeal technology: clinical practice guidelines-anticoagulation during cardiopulmonary bypass. Ann. Thorac. Surg. 2018;105:650–662. doi: 10.1016/j.athoracsur.2017.09.061. PubMed DOI
Mousavi S, Moradi M, Khorshidahmad T, Motamedi M. Anti-Inflammatory Effects of Heparin and Its Derivatives: A Systematic Review. Adv. Pharm. Sci. 2015;2015:507151. PubMed PMC
Borsig L. Heparin as an inhibitor of cancer progression. Prog. Mol. Biol. Transl. Sci. 2010;93:335–349. doi: 10.1016/S1877-1173(10)93014-7. PubMed DOI
Qiu M, et al. Pharmacological and clinical application of heparin progress: An essential drug for modern medicine. Biomed. Pharmacother. 2021;139:111561. doi: 10.1016/j.biopha.2021.111561. PubMed DOI
Gong J, Jaiswal R, Dalla P, Luk F, Bebawy M. Microparticles in cancer: A review of recent developments and the potential for clinical application. Semin. Cell Dev. Biol. 2015;40:35–40. doi: 10.1016/j.semcdb.2015.03.009. PubMed DOI
Rosell A, et al. Patients with COVID-19 have elevated levels of circulating extracellular vesicle tissue factor activity that is associated with severity and mortality-brief report. Arterioscler Thromb. Vasc. Biol. 2021;41:878–882. doi: 10.1161/ATVBAHA.120.315547. PubMed DOI PMC
Ayerbe L, Risco C, Ayis S. The association between treatment with heparin and survival in patients with Covid-19. J. Thromb. Thrombolysis. 2020;50:298–301. doi: 10.1007/s11239-020-02162-z. PubMed DOI PMC
Miesbach W, Makris M. COVID-19: coagulopathy, risk of thrombosis, and the rationale for anticoagulation. Clin. Appl Thromb. Hemost. 2020;26:1076029620938149. doi: 10.1177/1076029620938149. PubMed DOI PMC
Xia, B. et al. Extracellular vesicles mediate antibody-resistant transmission of SARS-CoV-2. Cell Discov. 9, 2 (2023). PubMed PMC
Abraham E, et al. Efficacy and safety of monoclonal antibody to human tumor necrosis factor alpha in patients with sepsis syndrome. A randomized, controlled, double-blind, multicenter clinical trial. TNF-alpha MAb Sepsis Study Group. JAMA. 1995;273:934–941. doi: 10.1001/jama.1995.03520360048038. PubMed DOI
Fisher CJ, Jr, et al. Recombinant human interleukin 1 receptor antagonist in the treatment of patients with sepsis syndrome. Results from a randomized, double-blind, placebo-controlled trial. Phase III rhIL-1ra Sepsis Syndrome Study Group. JAMA. 1994;271:1836–1843. doi: 10.1001/jama.1994.03510470040032. PubMed DOI