Prognostic relevance of the C-X-C motif chemokine ligand 13 and interleukin-8 in predicting the transition from clinically isolated syndrome to multiple sclerosis

. 2024 Jun ; 59 (11) : 2955-2966. [epub] 20240307

Jazyk angličtina Země Francie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38453679

Grantová podpora
NV19-05-00191 Ministry of Health of the Czech Republic
IGA_LF_2022_035 Palacky University

The initial phase of multiple sclerosis (MS), often known as clinically isolated syndrome (CIS), is a critical period for identifying individuals at high risk of progressing to full-blown MS and initiating timely treatment. In this study, we aimed to evaluate the prognostic value of C-X-C motif chemokine ligand 13 (CXCL13) and interleukin-8 (IL-8) as potential markers for CIS patients' conversion to MS. Our study encompassed patients with CIS, those with relapsing-remitting MS (RRMS), and control subjects, with sample analysis conducted on both cerebrospinal fluid (CSF) and serum. Patients were categorized into four groups: CIS-CIS (no MS development within 2 years), CIS-RRMS (conversion to RRMS within 2 years), RRMS (already diagnosed), and a control group (CG) with noninflammatory central nervous system disorders. Results showed significantly elevated levels of CXCL13 in CSF across all patient groups compared with the CG (p < 0.0001, Kruskal-Wallis test). Although CXCL13 concentrations were slightly higher in the CIS-RRMS group, statistical significance was not reached. Similarly, significantly higher levels of IL-8 were detected in CSF samples from all patient groups compared with the CG (p < 0.0001, Kruskal-Wallis test). Receiver operating characteristic analysis in the CIS-RRMS group identified both CXCL13 (area under receiver operating characteristic curve = .959) and IL-8 (area under receiver operating characteristic curve = .939) in CSF as significant predictors of CIS to RRMS conversion. In conclusion, our study suggests a trend towards elevated CSF IL-8 and CSF CXCL13 levels in CIS patients progressing to RRMS. These findings emphasize the importance of identifying prognostic markers to guide appropriate treatment strategies for individuals in the early stages of MS.

Zobrazit více v PubMed

Alvarez, E., Piccio, L., Mikesell, R. J., Klawiter, E. C., Parks, B. J., Naismith, R. T., & Cross, A. H. (2013). CXCL13 is a biomarker of inflammation in multiple sclerosis, neuromyelitis optica, and other neurological conditions. Multiple Sclerosis, 19(9), 1204–1208. https://doi.org/10.1177/1352458512473362

Arneth, B. M. (2019). Impact of B cells to the pathophysiology of multiple sclerosis. Journal of Neuroinflammation, 16(1), 128. https://doi.org/10.1186/s12974-019-1517-1

Baggiolini, M., & Clark‐Lewis, I. (1992). Interleukin‐8, a chemotactic and inflammatory cytokine. FEBS Letters, 307(1), 97–101. https://doi.org/10.1016/0014-5793(92)80909-z

Bartosik‐Psujek, H., & Stelmasiak, Z. (2005). The levels of chemokines CXCL8, CCL2 and CCL5 in multiple sclerosis patients are linked to the activity of the disease. European Journal of Neurology, 12(1), 49–54. https://doi.org/10.1111/j.1468-1331.2004.00951.x

Bhargava, P., Hartung, H. P., & Calabresi, P. A. (2022). Contribution of B cells to cortical dam in multiple sclerosis. Brain, 145(10), 3363–3373. https://doi.org/10.1093/brain/awac233

Bielekova, B., Komori, M., Xu, Q., Reich, D. S., & Wu, T. (2012). Cerebrospinal fluid IL‐12p40, CXCL13 and IL‐8 as a combinatorial biomarker of active intrathecal inflammation. PLoS ONE, 7(11), e48370. https://doi.org/10.1371/journal.pone.0048370

Brettschneider, J., Czerwoniak, A., Senel, M., Fang, L., Kassubek, J., Pinkhardt, E., Lauda, F., Kapfer, T., Jesse, S., Lehmensiek, V., Ludolph, A. C., Otto, M., & Tumani, H. (2010). The chemokine CXCL13 is a prognostic marker in clinically isolated syndrome (CIS). PLoS ONE, 5, e11986. https://doi.org/10.1371/journal.pone.0011986

Cai, L., & Huang, J. (2018). Neurofilament light chain as a biological marker for multiple sclerosis: A meta‐analysis study. Neuropsychiatric Disease and Treatment, 14, 2241–2254. https://doi.org/10.2147/NDT.S173280

De Bondt, M., Hellings, N., Opdenakker, G., & Struyf, S. (2020). Neutrophils: Underestimated players in the pathogenesis of multiple sclerosis (MS). International Journal of Molecular Sciences, 21(12), 4558. https://doi.org/10.3390/ijms21124558

Deisenhammer, F., Zetterberg, H., Fitzner, B., & Zettl, U. K. (2019). The cerebrospinal fluid in multiple sclerosis. Frontiers in Immunology, 10, 726. https://doi.org/10.3389/fimmu.2019.00726

DiSano, K. D., Gilli, F., & Pachner, A. R. (2020). Intrathecally produced CXCL13: A predictive biomarker in multiple sclerosis. Multiple Sclerosis Journal ‐ Experimental, Translational and Clinical, 6(4), 2055217320981396. https://doi.org/10.1177/2055217320981396

Eikelenboom, M. J., Uitdehaag, B. M. J., & Petzold, A. (2011). Blood and CSF biomarker dynamics in multiple sclerosis: Implications for data interpretation. Multiple Sclerosis International, 2011, 823176. https://doi.org/10.1155/2011/823176

Ferraro, D., Galli, V., Vitetta, F., Simone, A. M., Bedin, R., Del Giovane, C., Morselli, F., Filippini, M. M., Nichelli, P. F., & Sola, P. (2015). Cerebrospinal fluid CXCL13 in clinically isolated syndrome patients: Association with oligoclonal IgM bands and prediction of multiple sclerosis diagnosis. Journal of Neuroimmunology, 283, 64–69. https://doi.org/10.1016/j.jneuroim.2015.04.011

Ferreira‐Auesta, C., Reyes, S., Giovanonni, G., & Gnanapavan, S. (2021). The evolution of neurofilament light chain in multiple sclerosis. Frontiers in Neuroscience, 15, 642384. https://doi.org/10.3389/fnins.2021.642384

Hartung, H. P., Aktas, O., Menge, T., & Kieseier, C. K. (2014). Immune regulation of multiple sclerosis. Handbook of Clinical Neurology, 122, 3–14. https://doi.org/10.1016/B978-0-444-52001-2.00001-7

Khademi, M., Kockum, I., Andersson, M. L., Iacobaeus, E., Brundin, L., Sellebjerg, F., Hillert, J., Piehl, F., & Olsson, T. (2011). Cerebrospinal fluid CXCL13 in multiple sclerosis: A suggestive prognostic marker for the disease course. Multiple Sclerosis, 17(3), 335–343. https://doi.org/10.1177/1352458510389102

Kurtzke, J. F. (1961). On the evaluation of disability in multiple sclerosis. Neurology, 11, 686–694. https://doi.org/10.1212/WNL.11.8.686

Legler, D. F., Loetscher, M., Roos, R. S., Clark‐Lewis, I., Baggiolini, M., & Moser, B. (1998). B cell‐attracting chemokine 1, a human CXC chemokine expressed in lymphoid tissues, selectively attracts B lymphocytes via BLR1/CXCR5. The Journal of Experimental Medicine, 187(4), 655–660. https://doi.org/10.1084/jem.187.4.655

Lepennetier, G., Hracsko, Z., Unger, M., Van Griensven, M., Grummel, V., Krumbholz, M., Berthele, A., Hemmer, B., & Kowarik, M. C. (2019). Cytokine and immune cell profiling in the cerebrospinal fluid of patients with neuro‐inflammatory diseases. Journal of Neuroinflammation, 16(1), 219. https://doi.org/10.1186/s12974-019-1601-6

Matejčíková, Z., Mareš, J., Přikrylová Vranová, H., Klosová, J., Sládková, V., Doláková, J., Kaňovský, P., & Kaňovský, P. (2015). Cerebrospinal fluid inflammatory markers in patients with multiple sclerosis: A pilot study. Journal of Neural Transmission (Vienna), 122, 273–277. https://doi.org/10.1007/s00702-014-1244-9

Matejčíková, Z., Mareš, J., Sládková, V., Svrčinová, T., Vysloužilová, J., Zapletalová, J., & Kaňovský, P. (2017). Cerebrospinal fluid and serum levels of interleukin‐8 in patients with multiple sclerosis and its correlation with Q‐albumin. Multiple Sclerosis and Related Disorders, 14, 12–15. https://doi.org/10.1016/j.msard.2017.03.007

Miller, D. H., Chard, D. T., & Ciccarelli, O. (2012). Clinically isolated syndromes. Lancet Neurology, 11(2), 157–169. https://doi.org/10.1016/S1474-4422(11)70274-5

Modvig, S., Degn, M., Roed, H., Sørensen, T. L., Larsson, H. B. W., Langkilde, A. R., Frederiksen, J. L., & Sellebjerg, F. (2015). Cerebrospinal fluid levels of chitinase 3‐like 1 and neurofilament light chain predict multiple sclerosis development and disability after optic neuritis. Multiple Sclerosis, 21(14), 1761–1770. https://doi.org/10.1177/1352458515574148

Petržalka, M., Meluzínová, E., Libertínová, J., Mojžišová, H., Hanzalová, J., Ročková, P., Elišák, M., Kmetonyová, S., Šanda, J., Sobek, O., & Marusič, P. (2022). IL‐2, IL‐6 and chitinase 3‐like 2 might predict early relapse activity in multiple sclerosis. PLoS ONE, 17(6), e0270607. https://doi.org/10.1371/journal.pone.0270607

Rossi, S., Motta, C., Studer, V., Macchiarulo, G., Germani, G., Finardi, A., Furlan, R., Martino, G., & Centonze, D. (2015). Subclinical central inflammation is risk for RIS and CIS conversion to MS. Multiple Sclerosis, 21(11), 1443–1452. https://doi.org/10.1177/1352458514564482

Rupprecht, T. A., Plate, A., Adam, M., Wick, M., Kastenbauer, S., Schmidt, C., Pfister, H. W., Koedel, U., & Koedel, U. (2009). The chemokine CXCL13 is a key regulator of B cell recruitment to the cerebrospinal fluid in acute lyme neuroboreliosis. Journal of Neuroinflammation, 6, 42. https://doi.org/10.1186/1742-2094-6-42

Sapko, K., Jamroz‐Wiśniewska, A., Marciniec, M., Kulczyński, M., Szczepańska‐Szerej, A., & Rejdak, K. (2020). Biomarkers in multiple sclerosis: A review of diagnostic and prognostic factors. Neurologia I Neurochirurgia Polska, 54(3), 252–258. https://doi.org/10.5603/PJNNS.a2020.0037

Stelmasiak, Z., Kozioł‐Montewka, M., Dobosz, B., Rejdak, K., Bartosik‐Psujek, H., Mitosek‐Szewczyk, K., & Belniak‐Legieć, E. (2000). Interleukin‐6 concentration in serum and cerebrospinal fluid in multiple sclerosis patients. Medical Science Monitor, 6(6), 1104–1108.

Thompson, A. J., Banwell, B. L., Barkhof, F., Carroll, W. M., Coetzee, T., Comi, G., Correale, J., Fazekas, F., Filippi, M., Freedman, M. S., Fujihara, K., Galetta, S. L., Hartung, H. P., Kappos, L., Lublin, F. D., Marrie, R. A., Miller, A. E., Miller, D. H., Montalban, X., … Cohen, J. A. (2018). Diagnosis of multiple sclerosis: 2017 revision of the McDonald criteria. The Lancet Neurology, 17(2), 162–173. https://doi.org/10.1016/S1474-4422(17)30470-2

Thouvenot, É. (2015). Update on clinically isolated syndrome. Presse Médicale, 44(4), e121–e136. https://doi.org/10.1016/j.lpm.2015.03.002

Woodberry, T., Bouffler, S. E., Wilson, A. S., Buckland, R. L., & Brüstle, A. (2018). The emerging role of neutrophil granulocytes in multiple sclerosis. Journal of Clinical Medicine, 7(12), 511. https://doi.org/10.3390/jcm7120511

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...