Prognostic relevance of the C-X-C motif chemokine ligand 13 and interleukin-8 in predicting the transition from clinically isolated syndrome to multiple sclerosis
Jazyk angličtina Země Francie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
NV19-05-00191
Ministry of Health of the Czech Republic
IGA_LF_2022_035
Palacky University
PubMed
38453679
DOI
10.1111/ejn.16300
Knihovny.cz E-zdroje
- Klíčová slova
- CXCL13, IL‐8, biomarkers, clinically isolated syndrome, multiple sclerosis,
- MeSH
- biologické markery mozkomíšní mok krev MeSH
- chemokin CXCL13 * mozkomíšní mok krev MeSH
- demyelinizační nemoci mozkomíšní mok MeSH
- dospělí MeSH
- interleukin-8 * mozkomíšní mok krev MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- prognóza MeSH
- progrese nemoci * MeSH
- relabující-remitující roztroušená skleróza * mozkomíšní mok krev diagnóza MeSH
- roztroušená skleróza mozkomíšní mok krev diagnóza MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biologické markery MeSH
- chemokin CXCL13 * MeSH
- CXCL13 protein, human MeSH Prohlížeč
- CXCL8 protein, human MeSH Prohlížeč
- interleukin-8 * MeSH
The initial phase of multiple sclerosis (MS), often known as clinically isolated syndrome (CIS), is a critical period for identifying individuals at high risk of progressing to full-blown MS and initiating timely treatment. In this study, we aimed to evaluate the prognostic value of C-X-C motif chemokine ligand 13 (CXCL13) and interleukin-8 (IL-8) as potential markers for CIS patients' conversion to MS. Our study encompassed patients with CIS, those with relapsing-remitting MS (RRMS), and control subjects, with sample analysis conducted on both cerebrospinal fluid (CSF) and serum. Patients were categorized into four groups: CIS-CIS (no MS development within 2 years), CIS-RRMS (conversion to RRMS within 2 years), RRMS (already diagnosed), and a control group (CG) with noninflammatory central nervous system disorders. Results showed significantly elevated levels of CXCL13 in CSF across all patient groups compared with the CG (p < 0.0001, Kruskal-Wallis test). Although CXCL13 concentrations were slightly higher in the CIS-RRMS group, statistical significance was not reached. Similarly, significantly higher levels of IL-8 were detected in CSF samples from all patient groups compared with the CG (p < 0.0001, Kruskal-Wallis test). Receiver operating characteristic analysis in the CIS-RRMS group identified both CXCL13 (area under receiver operating characteristic curve = .959) and IL-8 (area under receiver operating characteristic curve = .939) in CSF as significant predictors of CIS to RRMS conversion. In conclusion, our study suggests a trend towards elevated CSF IL-8 and CSF CXCL13 levels in CIS patients progressing to RRMS. These findings emphasize the importance of identifying prognostic markers to guide appropriate treatment strategies for individuals in the early stages of MS.
Brain and Mind Center University of Sydney Sydney New South Wales Australia
Department of Immunology Faculty of Medicine and Dentistry Palacky University Olomouc Czech Republic
Department of Neurology Medical Faculty Heinrich Heine University Düsseldorf Germany
Zobrazit více v PubMed
Alvarez, E., Piccio, L., Mikesell, R. J., Klawiter, E. C., Parks, B. J., Naismith, R. T., & Cross, A. H. (2013). CXCL13 is a biomarker of inflammation in multiple sclerosis, neuromyelitis optica, and other neurological conditions. Multiple Sclerosis, 19(9), 1204–1208. https://doi.org/10.1177/1352458512473362
Arneth, B. M. (2019). Impact of B cells to the pathophysiology of multiple sclerosis. Journal of Neuroinflammation, 16(1), 128. https://doi.org/10.1186/s12974-019-1517-1
Baggiolini, M., & Clark‐Lewis, I. (1992). Interleukin‐8, a chemotactic and inflammatory cytokine. FEBS Letters, 307(1), 97–101. https://doi.org/10.1016/0014-5793(92)80909-z
Bartosik‐Psujek, H., & Stelmasiak, Z. (2005). The levels of chemokines CXCL8, CCL2 and CCL5 in multiple sclerosis patients are linked to the activity of the disease. European Journal of Neurology, 12(1), 49–54. https://doi.org/10.1111/j.1468-1331.2004.00951.x
Bhargava, P., Hartung, H. P., & Calabresi, P. A. (2022). Contribution of B cells to cortical dam in multiple sclerosis. Brain, 145(10), 3363–3373. https://doi.org/10.1093/brain/awac233
Bielekova, B., Komori, M., Xu, Q., Reich, D. S., & Wu, T. (2012). Cerebrospinal fluid IL‐12p40, CXCL13 and IL‐8 as a combinatorial biomarker of active intrathecal inflammation. PLoS ONE, 7(11), e48370. https://doi.org/10.1371/journal.pone.0048370
Brettschneider, J., Czerwoniak, A., Senel, M., Fang, L., Kassubek, J., Pinkhardt, E., Lauda, F., Kapfer, T., Jesse, S., Lehmensiek, V., Ludolph, A. C., Otto, M., & Tumani, H. (2010). The chemokine CXCL13 is a prognostic marker in clinically isolated syndrome (CIS). PLoS ONE, 5, e11986. https://doi.org/10.1371/journal.pone.0011986
Cai, L., & Huang, J. (2018). Neurofilament light chain as a biological marker for multiple sclerosis: A meta‐analysis study. Neuropsychiatric Disease and Treatment, 14, 2241–2254. https://doi.org/10.2147/NDT.S173280
De Bondt, M., Hellings, N., Opdenakker, G., & Struyf, S. (2020). Neutrophils: Underestimated players in the pathogenesis of multiple sclerosis (MS). International Journal of Molecular Sciences, 21(12), 4558. https://doi.org/10.3390/ijms21124558
Deisenhammer, F., Zetterberg, H., Fitzner, B., & Zettl, U. K. (2019). The cerebrospinal fluid in multiple sclerosis. Frontiers in Immunology, 10, 726. https://doi.org/10.3389/fimmu.2019.00726
DiSano, K. D., Gilli, F., & Pachner, A. R. (2020). Intrathecally produced CXCL13: A predictive biomarker in multiple sclerosis. Multiple Sclerosis Journal ‐ Experimental, Translational and Clinical, 6(4), 2055217320981396. https://doi.org/10.1177/2055217320981396
Eikelenboom, M. J., Uitdehaag, B. M. J., & Petzold, A. (2011). Blood and CSF biomarker dynamics in multiple sclerosis: Implications for data interpretation. Multiple Sclerosis International, 2011, 823176. https://doi.org/10.1155/2011/823176
Ferraro, D., Galli, V., Vitetta, F., Simone, A. M., Bedin, R., Del Giovane, C., Morselli, F., Filippini, M. M., Nichelli, P. F., & Sola, P. (2015). Cerebrospinal fluid CXCL13 in clinically isolated syndrome patients: Association with oligoclonal IgM bands and prediction of multiple sclerosis diagnosis. Journal of Neuroimmunology, 283, 64–69. https://doi.org/10.1016/j.jneuroim.2015.04.011
Ferreira‐Auesta, C., Reyes, S., Giovanonni, G., & Gnanapavan, S. (2021). The evolution of neurofilament light chain in multiple sclerosis. Frontiers in Neuroscience, 15, 642384. https://doi.org/10.3389/fnins.2021.642384
Hartung, H. P., Aktas, O., Menge, T., & Kieseier, C. K. (2014). Immune regulation of multiple sclerosis. Handbook of Clinical Neurology, 122, 3–14. https://doi.org/10.1016/B978-0-444-52001-2.00001-7
Khademi, M., Kockum, I., Andersson, M. L., Iacobaeus, E., Brundin, L., Sellebjerg, F., Hillert, J., Piehl, F., & Olsson, T. (2011). Cerebrospinal fluid CXCL13 in multiple sclerosis: A suggestive prognostic marker for the disease course. Multiple Sclerosis, 17(3), 335–343. https://doi.org/10.1177/1352458510389102
Kurtzke, J. F. (1961). On the evaluation of disability in multiple sclerosis. Neurology, 11, 686–694. https://doi.org/10.1212/WNL.11.8.686
Legler, D. F., Loetscher, M., Roos, R. S., Clark‐Lewis, I., Baggiolini, M., & Moser, B. (1998). B cell‐attracting chemokine 1, a human CXC chemokine expressed in lymphoid tissues, selectively attracts B lymphocytes via BLR1/CXCR5. The Journal of Experimental Medicine, 187(4), 655–660. https://doi.org/10.1084/jem.187.4.655
Lepennetier, G., Hracsko, Z., Unger, M., Van Griensven, M., Grummel, V., Krumbholz, M., Berthele, A., Hemmer, B., & Kowarik, M. C. (2019). Cytokine and immune cell profiling in the cerebrospinal fluid of patients with neuro‐inflammatory diseases. Journal of Neuroinflammation, 16(1), 219. https://doi.org/10.1186/s12974-019-1601-6
Matejčíková, Z., Mareš, J., Přikrylová Vranová, H., Klosová, J., Sládková, V., Doláková, J., Kaňovský, P., & Kaňovský, P. (2015). Cerebrospinal fluid inflammatory markers in patients with multiple sclerosis: A pilot study. Journal of Neural Transmission (Vienna), 122, 273–277. https://doi.org/10.1007/s00702-014-1244-9
Matejčíková, Z., Mareš, J., Sládková, V., Svrčinová, T., Vysloužilová, J., Zapletalová, J., & Kaňovský, P. (2017). Cerebrospinal fluid and serum levels of interleukin‐8 in patients with multiple sclerosis and its correlation with Q‐albumin. Multiple Sclerosis and Related Disorders, 14, 12–15. https://doi.org/10.1016/j.msard.2017.03.007
Miller, D. H., Chard, D. T., & Ciccarelli, O. (2012). Clinically isolated syndromes. Lancet Neurology, 11(2), 157–169. https://doi.org/10.1016/S1474-4422(11)70274-5
Modvig, S., Degn, M., Roed, H., Sørensen, T. L., Larsson, H. B. W., Langkilde, A. R., Frederiksen, J. L., & Sellebjerg, F. (2015). Cerebrospinal fluid levels of chitinase 3‐like 1 and neurofilament light chain predict multiple sclerosis development and disability after optic neuritis. Multiple Sclerosis, 21(14), 1761–1770. https://doi.org/10.1177/1352458515574148
Petržalka, M., Meluzínová, E., Libertínová, J., Mojžišová, H., Hanzalová, J., Ročková, P., Elišák, M., Kmetonyová, S., Šanda, J., Sobek, O., & Marusič, P. (2022). IL‐2, IL‐6 and chitinase 3‐like 2 might predict early relapse activity in multiple sclerosis. PLoS ONE, 17(6), e0270607. https://doi.org/10.1371/journal.pone.0270607
Rossi, S., Motta, C., Studer, V., Macchiarulo, G., Germani, G., Finardi, A., Furlan, R., Martino, G., & Centonze, D. (2015). Subclinical central inflammation is risk for RIS and CIS conversion to MS. Multiple Sclerosis, 21(11), 1443–1452. https://doi.org/10.1177/1352458514564482
Rupprecht, T. A., Plate, A., Adam, M., Wick, M., Kastenbauer, S., Schmidt, C., Pfister, H. W., Koedel, U., & Koedel, U. (2009). The chemokine CXCL13 is a key regulator of B cell recruitment to the cerebrospinal fluid in acute lyme neuroboreliosis. Journal of Neuroinflammation, 6, 42. https://doi.org/10.1186/1742-2094-6-42
Sapko, K., Jamroz‐Wiśniewska, A., Marciniec, M., Kulczyński, M., Szczepańska‐Szerej, A., & Rejdak, K. (2020). Biomarkers in multiple sclerosis: A review of diagnostic and prognostic factors. Neurologia I Neurochirurgia Polska, 54(3), 252–258. https://doi.org/10.5603/PJNNS.a2020.0037
Stelmasiak, Z., Kozioł‐Montewka, M., Dobosz, B., Rejdak, K., Bartosik‐Psujek, H., Mitosek‐Szewczyk, K., & Belniak‐Legieć, E. (2000). Interleukin‐6 concentration in serum and cerebrospinal fluid in multiple sclerosis patients. Medical Science Monitor, 6(6), 1104–1108.
Thompson, A. J., Banwell, B. L., Barkhof, F., Carroll, W. M., Coetzee, T., Comi, G., Correale, J., Fazekas, F., Filippi, M., Freedman, M. S., Fujihara, K., Galetta, S. L., Hartung, H. P., Kappos, L., Lublin, F. D., Marrie, R. A., Miller, A. E., Miller, D. H., Montalban, X., … Cohen, J. A. (2018). Diagnosis of multiple sclerosis: 2017 revision of the McDonald criteria. The Lancet Neurology, 17(2), 162–173. https://doi.org/10.1016/S1474-4422(17)30470-2
Thouvenot, É. (2015). Update on clinically isolated syndrome. Presse Médicale, 44(4), e121–e136. https://doi.org/10.1016/j.lpm.2015.03.002
Woodberry, T., Bouffler, S. E., Wilson, A. S., Buckland, R. L., & Brüstle, A. (2018). The emerging role of neutrophil granulocytes in multiple sclerosis. Journal of Clinical Medicine, 7(12), 511. https://doi.org/10.3390/jcm7120511