Tissue Hypoxia and Associated Innate Immune Factors in Experimental Autoimmune Optic Neuritis

. 2024 Mar 06 ; 25 (5) : . [epub] 20240306

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38474322

Grantová podpora
570425 Multiple Sclerosis Society - United Kingdom

Visual loss in acute optic neuritis is typically attributed to axonal conduction block due to inflammatory demyelination, but the mechanisms remain unclear. Recent research has highlighted tissue hypoxia as an important cause of neurological deficits and tissue damage in both multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE) and, here, we examine whether the optic nerves are hypoxic in experimental optic neuritis induced in Dark Agouti rats. At both the first and second peaks of disease expression, inflamed optic nerves labelled significantly for tissue hypoxia (namely, positive for hypoxia inducible factor-1α (HIF1α) and intravenously administered pimonidazole). Acutely inflamed nerves were also labelled significantly for innate markers of oxidative and nitrative stress and damage, including superoxide, nitric oxide and 3-nitrotyrosine. The density and diameter of capillaries were also increased. We conclude that in acute optic neuritis, the optic nerves are hypoxic and come under oxidative and nitrative stress and damage. Tissue hypoxia can cause mitochondrial failure and thus explains visual loss due to axonal conduction block. Tissue hypoxia can also induce a damaging oxidative and nitrative environment. The findings indicate that treatment to prevent tissue hypoxia in acute optic neuritis may help to restore vision and protect from damaging reactive oxygen and nitrogen species.

Zobrazit více v PubMed

Bennett J.L. Optic Neuritis. Continuum. 2019;25:1236–1264. doi: 10.1212/CON.0000000000000768. PubMed DOI PMC

Balcer L.J., Miller D.H., Reingold S.C., Cohen J.A. Vision and vision-related outcome measures in multiple sclerosis. Pt 1Brain. 2015;138:11–27. doi: 10.1093/brain/awu335. PubMed DOI PMC

Bennett J.L., Costello F., Chen J.J., Petzold A., Biousse V., Newman N.J., Galetta S.L. Optic neuritis and autoimmune optic neuropathies: Advances in diagnosis and treatment. Lancet Neurol. 2023;22:89–100. doi: 10.1016/S1474-4422(22)00187-9. PubMed DOI

Beck R.W., Cleary P.A. Optic neuritis treatment trial. One-year follow-up results. Arch. Ophthalmol. 1993;111:773–775. doi: 10.1001/archopht.1993.01090060061023. PubMed DOI

Beck R.W., Cleary P.A., Backlund J.C., Optic Neuritis Study Group The Course of Visual Recovery after Optic Neuritis: Experience of the Optic Neuritis Treatment Trial. Ophthalmology. 2020;127:S174–S181. doi: 10.1016/j.ophtha.2020.01.027. PubMed DOI

Henderson A.P.D., Altmann D.R., Trip S.A., Miszkiel K.A., Schlottmann P.G., Jones S.J., Garway-Heath D.F., Plant G.T., Miller D.H. Early factors associated with axonal loss after optic neuritis. Ann. Neurol. 2011;70:955–963. doi: 10.1002/ana.22554. PubMed DOI

Kolappan M., Henderson A.P.D., Jenkins T.M., Wheeler-Kingshott C.A.M., Plant G.T., Thompson A.J., Miller D.H. Assessing structure and function of the afferent visual pathway in multiple sclerosis and associated optic neuritis. J. Neurol. 2009;256:305–319. doi: 10.1007/s00415-009-0123-z. PubMed DOI

Youl B.D., Turano G., Miller D.H., Towell A.D., MacManus D.G., Moore S.G., Jones S.J., Barrett G., Kendall B.E., Moseley I.F., et al. The pathophysiology of acute optic neuritis. An association of gadolinium leakage with clinical and electrophysiological deficits. Pt 6Brain. 1991;114:2437–2450. doi: 10.1093/brain/114.6.2437. PubMed DOI

Toosy A.T., Mason D.F., Miller D.H. Optic neuritis. Lancet Neurol. 2014;13:83–99. doi: 10.1016/S1474-4422(13)70259-X. PubMed DOI

Steudler J., Ecott T., Ivan D.C., Bouillet E., Walthert S., Berve K., Dick T.P., Engelhardt B., Locatelli G. Autoimmune neuroinflammation triggers mitochondrial oxidation in oligodendrocytes. Glia. 2022;70:2045–2061. doi: 10.1002/glia.24235. PubMed DOI PMC

Qi X., Lewin A.S., Sun L., Hauswirth W.W., Guy J. Suppression of mitochondrial oxidative stress provides long-term neuroprotection in experimental optic neuritis. Investig. Opthalmol. Vis. Sci. 2007;48:681–691. doi: 10.1167/iovs.06-0553. PubMed DOI

Kang E.Y.-C., Liu P.-K., Wen Y.-T., Quinn P.M.J., Levi S.R., Wang N.-K., Tsai R.-K. Role of Oxidative Stress in Ocular Diseases Associated with Retinal Ganglion Cells Degeneration. Antioxidants. 2021;10:1948. doi: 10.3390/antiox10121948. PubMed DOI PMC

Lassmann H., van Horssen J., Mahad D. Progressive multiple sclerosis: Pathology and pathogenesis. Nat. Rev. Neurol. 2012;8:647–656. doi: 10.1038/nrneurol.2012.168. PubMed DOI

van Horssen J., Witte M.E., Schreibelt G., de Vries H.E. Radical changes in multiple sclerosis pathogenesis. Biochim. Biophys. Acta. 2011;1812:141–150. doi: 10.1016/j.bbadis.2010.06.011. PubMed DOI

Haider L. Inflammation, Iron, Energy Failure, and Oxidative Stress in the Pathogenesis of Multiple Sclerosis. Oxid. Med. Cell Longev. 2015;2015:725370. doi: 10.1155/2015/725370. PubMed DOI PMC

Nikić I., Merkler D., Sorbara C., Brinkoetter M., Kreutzfeldt M., Bareyre F.M., Brück W., Bishop D., Misgeld T., Kerschensteiner M. A reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis. Nat. Med. 2011;17:495–499. doi: 10.1038/nm.2324. PubMed DOI

Qi X., Lewin A.S., Sun L., Hauswirth W.W., Guy J. Mitochondrial protein nitration primes neurodegeneration in experimental autoimmune encephalomyelitis. J. Biol. Chem. 2006;281:31950–31962. doi: 10.1074/jbc.M603717200. PubMed DOI

Beltrán B., Quintero M., García-Zaragozá E., O’Connor E., Esplugues J.V., Moncada S. Inhibition of mitochondrial respiration by endogenous nitric oxide: A critical step in Fas signaling. Proc. Natl. Acad. Sci. USA. 2002;99:8892–8897. doi: 10.1073/pnas.092259799. PubMed DOI PMC

Li S., Vana A.C., Ribeiro R., Zhang Y. Distinct role of nitric oxide and peroxynitrite in mediating oligodendrocyte toxicity in culture and in experimental autoimmune encephalomyelitis. Neuroscience. 2011;184:107–119. doi: 10.1016/j.neuroscience.2011.04.007. PubMed DOI

Clementi E., Brown G.C., Feelisch M., Moncada S. Persistent inhibition of cell respiration by nitric oxide: Crucial role ofS-nitrosylation of mitochondrial complex I and protective action of glutathione. Proc. Natl. Acad. Sci. USA. 1998;95:7631–7636. doi: 10.1073/pnas.95.13.7631. PubMed DOI PMC

Lizasoain I., Moro M.A., Knowles R.G., Darley-Usmar V., Moncada S. Nitric oxide and peroxynitrite exert distinct effects on mitochondrial respiration which are differentially blocked by glutathione or glucose. Biochem. J. 1996;314:877–880. doi: 10.1042/bj3140877. PubMed DOI PMC

Cleeter M.W., Cooper J.M., Darley-Usmar V.M., Moncada S., Schapira A.H. Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, by nitric oxide. FEBS Lett. 1994;345:50–54. doi: 10.1016/0014-5793(94)00424-2. PubMed DOI

Moncada S., Bolaños J.P. Nitric oxide, cell bioenergetics and neurodegeneration. J. Neurochem. 2006;97:1676–1689. doi: 10.1111/j.1471-4159.2006.03988.x. PubMed DOI

Mander P., Borutaite V., Moncada S., Brown G.C. Nitric oxide from inflammatory-activated glia synergizes with hypoxia to induce neuronal death. J. Neurosci. Res. 2005;79:208–215. doi: 10.1002/jnr.20285. PubMed DOI

Stewart V.C., Heales S.J. Nitric oxide-induced mitochondrial dysfunction: Implications for neurodegeneration. Free Radic. Biol. Med. 2003;34:287–303. doi: 10.1016/S0891-5849(02)01327-8. PubMed DOI

Heales S.J.R., Barker J.E., Stewart V.C., Brand M.P., Hargreaves I.P., Foppa P., Land J.M., Clark J.B., Bolaνos J.P. Nitric oxide, energy metabolism and neurological disease. Biochem. Soc. Trans. 1997;25:939–943. doi: 10.1042/bst0250939. PubMed DOI

Liñares D., Taconis M., Maña P., Correcha M., Fordham S., Staykova M., Willenborg D.O. Neuronal nitric oxide synthase plays a key role in CNS demyelination. J. Neurosci. 2006;26:12672–12681. doi: 10.1523/JNEUROSCI.0294-06.2006. PubMed DOI PMC

Brown G.C., Neher J.J. Inflammatory neurodegeneration and mechanisms of microglial killing of neurons. Mol. Neurobiol. 2010;41:242–247. doi: 10.1007/s12035-010-8105-9. PubMed DOI

Bolaños J.P., Heales S.J.R., Land J.M., Clark J.B. Effect of peroxynitrite on the mitochondrial respiratory chain: Differential susceptibility of neurones and astrocytes in primary culture. J. Neurochem. 1995;64:1965–1972. doi: 10.1046/j.1471-4159.1995.64051965.x. PubMed DOI

Calcerrada P., Peluffo G., Radi R. Nitric oxide-derived oxidants with a focus on peroxynitrite: Molecular targets, cellular responses and therapeutic implications. Curr. Pharm. Des. 2011;17:3905–3932. doi: 10.2174/138161211798357719. PubMed DOI

Parihar A., Vaccaro P., Ghafourifar P. Nitric oxide irreversibly inhibits cytochrome oxidase at low oxygen concentrations: Evidence for inverse oxygen concentration-dependent peroxynitrite formation. IUBMB Life. 2008;60:64–67. doi: 10.1002/iub.12. PubMed DOI

Li J., Baud O., Vartanian T., Volpe J.J., Rosenberg P.A. Peroxynitrite generated by inducible nitric oxide synthase and NADPH oxidase mediates microglial toxicity to oligodendrocytes. Proc. Natl. Acad. Sci. USA. 2005;102:9936–9941. doi: 10.1073/pnas.0502552102. PubMed DOI PMC

Mosavimehr M., Mesbah-Namin S.A. Mitochondrial Dysfunction in EAE Mice Brains and Impact of HIF1-α Induction to Compensate Energy Loss. Arch. Neurosci. 2020;7:e104209. doi: 10.5812/ans.104209. DOI

Rosenkranz S.C., Shaposhnykov A.A., Trager S., Engler J.B., Witte M.E., Roth V., Vieira V., Paauw N., Bauer S., Schwencke-Westphal C., et al. Enhancing mitochondrial activity in neurons protects against neurodegeneration in a mouse model of multiple sclerosis. eLife. 2021;10:e61798. doi: 10.7554/eLife.61798. PubMed DOI PMC

Mahad D.H., Trapp B.D., Lassmann H. Pathological mechanisms in progressive multiple sclerosis. Lancet Neurol. 2015;14:183–193. doi: 10.1016/S1474-4422(14)70256-X. PubMed DOI

Ng X., Sadeghian M., Heales S., Hargreaves I.P. Assessment of Mitochondrial Dysfunction in Experimental Autoimmune Encephalomyelitis (EAE) Models of Multiple Sclerosis. Int. J. Mol. Sci. 2019;20:4975. doi: 10.3390/ijms20204975. PubMed DOI PMC

Sadeghian M., Mastrolia V., Haddad A.R., Mosley A., Mullali G., Schiza D., Sajic M., Hargreaves I., Heales S., Duchen M.R., et al. Mitochondrial dysfunction is an important cause of neurological deficits in an inflammatory model of multiple sclerosis. Sci. Rep. 2016;6:33249. doi: 10.1038/srep33249. PubMed DOI PMC

Witte M.E., Geurts J.J., de Vries H.E., van der Valk P., van Horssen J. Mitochondrial dysfunction: A potential link between neuroinflammation and neurodegeneration? Mitochondrion. 2010;10:411–418. doi: 10.1016/j.mito.2010.05.014. PubMed DOI

Soane L., Kahraman S., Kristian T., Fiskum G. Mechanisms of impaired mitochondrial energy metabolism in acute and chronic neurodegenerative disorders. J. Neurosci. Res. 2007;85:3407–3415. doi: 10.1002/jnr.21498. PubMed DOI PMC

Lassmann H. Multiple sclerosis: Lessons from molecular neuropathology. Exp. Neurol. 2014;262:2–7. doi: 10.1016/j.expneurol.2013.12.003. PubMed DOI

Desai R.A., Smith K.J. Experimental autoimmune encephalomyelitis from a tissue energy perspective. F1000Research. 2017;6:1973. doi: 10.12688/f1000research.11839.1. PubMed DOI PMC

Rajda C., Pukoli D., Bende Z., Majláth Z., Vécsei L. Excitotoxins, Mitochondrial and Redox Disturbances in Multiple Sclerosis. Int. J. Mol. Sci. 2017;18:353. doi: 10.3390/ijms18020353. PubMed DOI PMC

Lassmann H. Axonal and neuronal pathology in multiple sclerosis: What have we learnt from animal models. Exp. Neurol. 2010;225:2–8. doi: 10.1016/j.expneurol.2009.10.009. PubMed DOI

Smith K.J., Kapoor R., Felts P.A. Demyelination: The role of reactive oxygen and nitrogen species. Brain Pathol. 1999;9:69–92. doi: 10.1111/j.1750-3639.1999.tb00212.x. PubMed DOI PMC

Gonsette R. Neurodegeneration in multiple sclerosis: The role of oxidative stress and excitotoxicity. J. Neurol. Sci. 2008;274:48–53. doi: 10.1016/j.jns.2008.06.029. PubMed DOI

Guy J. Optic nerve degeneration in experimental autoimmune encephalomyelitis. Ophthalmic Res. 2008;40:212–216. doi: 10.1159/000119879. PubMed DOI

Sanz-Morello B., Ahmadi H., Vohra R., Saruhanian S., Freude K.K., Hamann S., Kolko M. Oxidative Stress in Optic Neuropathies. Antioxidants. 2021;10:1538. doi: 10.3390/antiox10101538. PubMed DOI PMC

Tsoi V.L., Hill K.E., Carlson N.G., Warner J.E.A., Rose J.W. Immunohistochemical evidence of inducible nitric oxide synthase and nitrotyrosine in a case of clinically isolated optic neuritis. J. Neuro-Ophthalmol. 2006;26:87–94. doi: 10.1097/01.wno.0000223266.48447.1b. PubMed DOI

Qi X., Sun L., Lewin A.S., Hauswirth W.W., Guy J. Long-term suppression of neurodegeneration in chronic experimental optic neuritis: Antioxidant gene therapy. Investig. Opthalmol. Vis. Sci. 2007;48:5360–5370. doi: 10.1167/iovs.07-0254. PubMed DOI

Guy J., Ellis E.A., Hope G.M., Rao N.A. Antioxidant enzyme suppression of demyelination in experimental optic neuritis. Curr. Eye Res. 1989;8:467–477. doi: 10.3109/02713688909000027. PubMed DOI

Guy J., Ellis E.A., Hope G., Rao N.A. Influence of antioxidant enzymes in reduction of optic disc edema in experimental optic neuritis. J. Free Radic. Biol. Med. 1986;2:349–357. doi: 10.1016/S0748-5514(86)80035-6. PubMed DOI

Hobom M., Storch M.K., Weissert R., Maier K., Radhakrishnan A., Kramer B., Bähr M., Diem R. Mechanisms and time course of neuronal degeneration in experimental autoimmune encephalomyelitis. Brain Pathol. 2004;14:148–157. doi: 10.1111/j.1750-3639.2004.tb00047.x. PubMed DOI PMC

Storch M.K., Stefferl A., Brehm U., Weissert R., Wallström E., Kerschensteiner M., Olsson T., Linington C., Lassmann H. Autoimmunity to myelin oligodendrocyte glycoprotein in rats mimics the spectrum of multiple sclerosis pathology. Brain Pathol. 1998;8:681–694. doi: 10.1111/j.1750-3639.1998.tb00194.x. PubMed DOI PMC

Beck R.W., Cleary P.A., Anderson M.M., Jr., Keltner J.L., Shults W.T., Kaufman D.I., Buckley E.G., Corbett J.J., Kupersmith M.J., Miller N.R., et al. A Randomized, controlled trial of corticosteroids in the treatment of acute optic neuritis. N. Engl. J. Med. 1992;326:581–588. doi: 10.1056/NEJM199202273260901. PubMed DOI

Hickman S.J., Dalton C.M., Miller D.H., Plant G.T. Management of acute optic neuritis. Lancet. 2002;360:1953–1962. doi: 10.1016/S0140-6736(02)11919-2. PubMed DOI

Gal R.L., Vedula S.S., Beck R. Corticosteroids for treating optic neuritis. Cochrane Database Syst. Rev. 2015;8:CD001430. doi: 10.1002/14651858.CD001430.pub4. PubMed DOI PMC

Kapoor R., Miller D.H., Jones S.J., Plant G.T., Brusa A., Gass A., Hawkins C.P., Page R., Wood N.W., Compston D.A.S., et al. Effects of intravenous methylprednisolone on outcome in MRI-based prognostic subgroups in acute optic neuritis. Neurology. 1998;50:230–237. doi: 10.1212/WNL.50.1.230. PubMed DOI

Murphy M.P. How mitochondria produce reactive oxygen species. Biochem. J. 2009;417:1–13. doi: 10.1042/BJ20081386. PubMed DOI PMC

Waypa G.B., Marks J.D., Guzy R.D., Mungai P.T., Schriewer J.M., Dokic D., Ball M.K., Schumacker P.T. Superoxide generated at mitochondrial complex III triggers acute responses to hypoxia in the pulmonary circulation. Am. J. Respir. Crit. Care Med. 2013;187:424–432. doi: 10.1164/rccm.201207-1294OC. PubMed DOI PMC

Hamanaka R.B., Chandel N.S. Mitochondrial reactive oxygen species regulate hypoxic signaling. Curr. Opin. Cell Biol. 2009;21:894–899. doi: 10.1016/j.ceb.2009.08.005. PubMed DOI PMC

Hoek T.L.V., Becker L.B., Shao Z., Li C., Schumacker P.T. Reactive oxygen species released from mitochondria during brief hypoxia induce preconditioning in cardiomyocytes. J. Biol. Chem. 1998;273:18092–18098. doi: 10.1074/jbc.273.29.18092. PubMed DOI

Robinson M.A., Baumgardner J.E., Otto C.M. Oxygen-dependent regulation of nitric oxide production by inducible nitric oxide synthase. Free Radic. Biol. Med. 2011;51:1952–1965. doi: 10.1016/j.freeradbiomed.2011.08.034. PubMed DOI

Jung F., Palmer L.A., Zhou N., Johns R.A. Hypoxic regulation of inducible nitric oxide synthase via hypoxia inducible factor-1 in cardiac myocytes. Circ. Res. 2000;86:319–325. doi: 10.1161/01.RES.86.3.319. PubMed DOI

Eltzschig H.K., Carmeliet P. Hypoxia and inflammation. N. Engl. J. Med. 2011;364:656–665. doi: 10.1056/NEJMra0910283. PubMed DOI PMC

Bartesaghi S., Radi R. Fundamentals on the biochemistry of peroxynitrite and protein tyrosine nitration. Redox Biol. 2017;14:618–625. doi: 10.1016/j.redox.2017.09.009. PubMed DOI PMC

Huie R.E., Padmaja S. The reaction of no with superoxide. Free Radic. Res. Commun. 1993;18:195–199. doi: 10.3109/10715769309145868. PubMed DOI

Beckman J.S., Koppenol W.H. Nitric oxide, superoxide, and peroxynitrite: The good, the bad, and the ugly. Pt 1Am. J. Physiol. 1996;271:C1424–C1437. doi: 10.1152/ajpcell.1996.271.5.C1424. PubMed DOI

Mohammadi S., Gouravani M., Salehi M.A., Arevalo J.F., Galetta S.L., Harandi H., Frohman E.M., Frohman T.C., Saidha S., Sattarnezhad N., et al. Optical coherence tomography angiography measurements in multiple sclerosis: A systematic review and meta-analysis. J. Neuroinflam. 2023;20:85. doi: 10.1186/s12974-023-02763-4. PubMed DOI PMC

Collignon-Robe N.J., Feke G.T., Rizzo J.F., 3rd Optic nerve head circulation in nonarteritic anterior ischemic optic neuropathy and optic neuritis. Ophthalmology. 2004;111:1663–1672. doi: 10.1016/j.ophtha.2004.05.020. PubMed DOI

Chen T.-C., Yeh C.-Y., Lin C.-W., Yang C.-M., Yang C.-H., Lin I.-H., Chen P.-Y., Cheng J.-Y., Hu F.-R. Vascular hypoperfusion in acute optic neuritis is a potentially new neurovascular model for demyelinating diseases. PLoS ONE. 2017;12:e0184927. doi: 10.1371/journal.pone.0184927. PubMed DOI PMC

Akarsu C., Tan F.U., Kendi T. Color Doppler imaging in optic neuritis with multiple sclerosis. Graefe’s Arch. Clin. Exp. Ophthalmol. 2004;242:990–994. doi: 10.1007/s00417-004-0948-1. PubMed DOI

Buscho S.E., Xia F., Shi S., Lin J.L., Szczesny B., Zhang W., Motamedi M., Liu H. Non-Invasive Evaluation of Retinal Vascular Alterations in a Mouse Model of Optic Neuritis Using Laser Speckle Flowgraphy and Optical Coherence Tomography Angiography. Cells. 2023;12:2685. doi: 10.3390/cells12232685. PubMed DOI PMC

Rocha N.P., Colpo G.D., Bravo-Alegria J., Lincoln J.A., Wolinsky J.S., Lindsey J.W., Teixeira A.L., Freeman L. Exploring the relationship between Endothelin-1 and peripheral inflammation in multiple sclerosis. J. Neuroimmunol. 2019;326:45–48. doi: 10.1016/j.jneuroim.2018.11.007. PubMed DOI

Monti L., Morbidelli L., Bazzani L., Rossi A. Influence of Circulating Endothelin-1 and Asymmetric Dimethylarginine on Whole Brain Circulation Time in Multiple Sclerosis. Biomark. Insights. 2017;12:1177271917712514. doi: 10.1177/1177271917712514. PubMed DOI PMC

Pache M., Kaiser H.J., Akhalbedashvili N., Lienert C., Dubler B., Kappos L., Flammer J. Extraocular blood flow and endothelin-1 plasma levels in patients with multiple sclerosis. Eur. Neurol. 2003;49:164–168. doi: 10.1159/000069085. PubMed DOI

Haufschild T., Shaw S.G., Kaiser H.J., Flammer J. Transient raise of endothelin-1 plasma level and reduction of ocular blood flow in a patient with optic neuritis. Ophthalmologica. 2003;217:451–453. doi: 10.1159/000073079. PubMed DOI

Castellazzi M., Lamberti G., Resi M.V., Baldi E., Caniatti L.M., Galante G., Perri P., Pugliatti M. Increased Levels of Endothelin-1 in Cerebrospinal Fluid Are a Marker of Poor Visual Recovery after Optic Neuritis in Multiple Sclerosis Patients. Dis. Markers. 2019;2019:9320791. doi: 10.1155/2019/9320791. PubMed DOI PMC

Brunori M., Forte E., Arese M., Mastronicola D., Giuffrè A., Sarti P. Nitric oxide and the respiratory enzyme. Biochim. Biophys. Acta (BBA)-Bioenerg. 2006;1757:1144–1154. doi: 10.1016/j.bbabio.2006.05.011. PubMed DOI

Sarti P., Arese M., Bacchi A., Barone M.C., Forte E., Mastronicola D., Brunori M., Giuffrè A. Nitric oxide and mitochondrial complex IV. IUBMB Life. 2003;55:605–611. doi: 10.1080/15216540310001628726. PubMed DOI

Amatruda M., Harris K., Matis A., Davies A.L., McElroy D., Clark M., Linington C., Desai R., Smith K.J. Oxygen treatment reduces neurological deficits and demyelination in two animal models of multiple sclerosis. Neuropathol. Appl. Neurobiol. 2023;49:e12868. doi: 10.1111/nan.12868. PubMed DOI PMC

Desai R.A., Davies A.L., Del Rossi N., Tachrount M., Dyson A., Gustavson B., Kaynezhad P., Mackenzie L., van der Putten M.A., McElroy D., et al. Nimodipine Reduces Dysfunction and Demyelination in Models of Multiple Sclerosis. Ann. Neurol. 2020;88:123–136. doi: 10.1002/ana.25749. PubMed DOI PMC

Davies A.L., Desai R.A., Bloomfield P.S., McIntosh P.R., Chapple K.J., Linington C., Fairless R., Diem R., Kasti M., Murphy M.P., et al. Neurological deficits caused by tissue hypoxia in neuroinflammatory disease. Ann. Neurol. 2013;74:815–825. doi: 10.1002/ana.24006. PubMed DOI

Desai R.A., Davies A.L., Tachrount M., Kasti M., Laulund F., Golay X., Smith K.J. Cause and prevention of demyelination in a model multiple sclerosis lesion. Ann. Neurol. 2016;79:591–604. doi: 10.1002/ana.24607. PubMed DOI PMC

Fern R., Harrison P.J. The effects of compression upon conduction in myelinated axons of the isolated frog sciatic nerve. J. Physiol. 1991;432:111–122. doi: 10.1113/jphysiol.1991.sp018379. PubMed DOI PMC

Singer M., Young P.J., Laffey J.G., Asfar P., Taccone F.S., Skrifvars M.B., Meyhoff C.S., Radermacher P. Dangers of hyperoxia. Crit. Care. 2021;25:440. doi: 10.1186/s13054-021-03815-y. PubMed DOI PMC

Bechtold D.A., Smith K.J. Sodium-mediated axonal degeneration in inflammatory demyelinating disease. J. Neurol. Sci. 2005;233:27–35. doi: 10.1016/j.jns.2005.03.003. PubMed DOI

Bechtold D.A., Miller S.J., Dawson A.C., Sun Y., Kapoor R., Berry D., Smith K.J. Axonal protection achieved in a model of multiple sclerosis using lamotrigine. J. Neurol. 2006;253:1542–1551. doi: 10.1007/s00415-006-0204-1. PubMed DOI

Bechtold D.A., Kapoor R., Smith K.J. Axonal protection using flecainide in experimental autoimmune encephalomyelitis. Ann. Neurol. 2004;55:607–616. doi: 10.1002/ana.20045. PubMed DOI

Lo A.C., Saab C.Y., Black J.A., Waxman S.G. Phenytoin protects spinal cord axons and preserves axonal conduction and neurological function in a model of neuroinflammation in vivo. J. Neurophysiol. 2003;90:3566–3571. doi: 10.1152/jn.00434.2003. PubMed DOI

Black J.A., Liu S., Hains B.C., Saab C.Y., Waxman S.G. Long-term protection of central axons with phenytoin in monophasic and chronic-relapsing EAE. Brain. 2006;129:3196–3208. doi: 10.1093/brain/awl216. PubMed DOI

Bechtold D.A., Yue X., Evans R.M., Davies M., Gregson N.A., Smith K.J. Axonal protection in experimental autoimmune neuritis by the sodium channel blocking agent flecainide. Brain. 2004;128:18–28. doi: 10.1093/brain/awh328. PubMed DOI

Raftopoulos R., Hickman S.J., Toosy A., Sharrack B., Mallik S., Paling D., Altmann D.R., Yiannakas M.C., Malladi P., Sheridan R., et al. Phenytoin for neuroprotection in patients with acute optic neuritis: A randomised, placebo-controlled, phase 2 trial. Lancet Neurol. 2016;15:259–269. doi: 10.1016/S1474-4422(16)00004-1. PubMed DOI

Morsali D., Bechtold D., Lee W., Chauhdry S., Palchaudhuri U., Hassoon P., Snell D.M., Malpass K., Piers T., Pocock J., et al. Safinamide and flecainide protect axons and reduce microglial activation in models of multiple sclerosis. Pt 4Brain. 2013;136:1067–1082. doi: 10.1093/brain/awt041. PubMed DOI

Craner M.J., Damarjian T.G., Liu S., Hains B.C., Lo A.C., Black J.A., Newcombe J., Cuzner M.L., Waxman S.G. Sodium channels contribute to microglia/macrophage activation and function in EAE and MS. Glia. 2005;49:220–229. doi: 10.1002/glia.20112. PubMed DOI

Black J.A., Liu S., Waxman S.G. Sodium channel activity modulates multiple functions in microglia. Glia. 2009;57:1072–1081. doi: 10.1002/glia.20830. PubMed DOI

Sadeghian M., Mullali G., Pocock J.M., Piers T., Roach A., Smith K.J. Neuroprotection by safinamide in the 6-hydroxydopamine model of Parkinson’s disease. Neuropathol. Appl. Neurobiol. 2015;42:423–435. doi: 10.1111/nan.12263. PubMed DOI

Arteel G.E., Thurman R.G., Raleigh J.A. Reductive metabolism of the hypoxia marker pimonidazole is regulated by oxygen tension independent of the pyridine nucleotide redox state. JBIC J. Biol. Inorg. Chem. 1998;253:743–750. doi: 10.1046/j.1432-1327.1998.2530743.x. PubMed DOI

Zanetti M., d’Uscio L.V., Peterson T.E., Katusic Z.S., O’Brien T. Analysis of superoxide anion production in tissue. Methods Mol. Med. 2005;108:65–72. PubMed

Peshavariya H.M., Dusting G.J., Selemidis S. Analysis of dihydroethidium fluorescence for the detection of intracellular and extracellular superoxide produced by NADPH oxidase. Free Radic. Res. 2007;41:699–712. doi: 10.1080/10715760701297354. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...