Tissue Hypoxia and Associated Innate Immune Factors in Experimental Autoimmune Optic Neuritis
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
570425
Multiple Sclerosis Society - United Kingdom
PubMed
38474322
PubMed Central
PMC10932468
DOI
10.3390/ijms25053077
PII: ijms25053077
Knihovny.cz E-zdroje
- Klíčová slova
- hypoxia inducible factor-1α, multiple sclerosis, nitric oxide, oxidative stress, peroxynitrite, superoxide,
- MeSH
- encefalomyelitida autoimunitní experimentální * metabolismus MeSH
- hypoxie metabolismus MeSH
- imunologické faktory metabolismus MeSH
- krysa rodu Rattus MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- nervus opticus metabolismus MeSH
- zánět zrakového nervu * metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- imunologické faktory MeSH
Visual loss in acute optic neuritis is typically attributed to axonal conduction block due to inflammatory demyelination, but the mechanisms remain unclear. Recent research has highlighted tissue hypoxia as an important cause of neurological deficits and tissue damage in both multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE) and, here, we examine whether the optic nerves are hypoxic in experimental optic neuritis induced in Dark Agouti rats. At both the first and second peaks of disease expression, inflamed optic nerves labelled significantly for tissue hypoxia (namely, positive for hypoxia inducible factor-1α (HIF1α) and intravenously administered pimonidazole). Acutely inflamed nerves were also labelled significantly for innate markers of oxidative and nitrative stress and damage, including superoxide, nitric oxide and 3-nitrotyrosine. The density and diameter of capillaries were also increased. We conclude that in acute optic neuritis, the optic nerves are hypoxic and come under oxidative and nitrative stress and damage. Tissue hypoxia can cause mitochondrial failure and thus explains visual loss due to axonal conduction block. Tissue hypoxia can also induce a damaging oxidative and nitrative environment. The findings indicate that treatment to prevent tissue hypoxia in acute optic neuritis may help to restore vision and protect from damaging reactive oxygen and nitrogen species.
Zobrazit více v PubMed
Bennett J.L. Optic Neuritis. Continuum. 2019;25:1236–1264. doi: 10.1212/CON.0000000000000768. PubMed DOI PMC
Balcer L.J., Miller D.H., Reingold S.C., Cohen J.A. Vision and vision-related outcome measures in multiple sclerosis. Pt 1Brain. 2015;138:11–27. doi: 10.1093/brain/awu335. PubMed DOI PMC
Bennett J.L., Costello F., Chen J.J., Petzold A., Biousse V., Newman N.J., Galetta S.L. Optic neuritis and autoimmune optic neuropathies: Advances in diagnosis and treatment. Lancet Neurol. 2023;22:89–100. doi: 10.1016/S1474-4422(22)00187-9. PubMed DOI
Beck R.W., Cleary P.A. Optic neuritis treatment trial. One-year follow-up results. Arch. Ophthalmol. 1993;111:773–775. doi: 10.1001/archopht.1993.01090060061023. PubMed DOI
Beck R.W., Cleary P.A., Backlund J.C., Optic Neuritis Study Group The Course of Visual Recovery after Optic Neuritis: Experience of the Optic Neuritis Treatment Trial. Ophthalmology. 2020;127:S174–S181. doi: 10.1016/j.ophtha.2020.01.027. PubMed DOI
Henderson A.P.D., Altmann D.R., Trip S.A., Miszkiel K.A., Schlottmann P.G., Jones S.J., Garway-Heath D.F., Plant G.T., Miller D.H. Early factors associated with axonal loss after optic neuritis. Ann. Neurol. 2011;70:955–963. doi: 10.1002/ana.22554. PubMed DOI
Kolappan M., Henderson A.P.D., Jenkins T.M., Wheeler-Kingshott C.A.M., Plant G.T., Thompson A.J., Miller D.H. Assessing structure and function of the afferent visual pathway in multiple sclerosis and associated optic neuritis. J. Neurol. 2009;256:305–319. doi: 10.1007/s00415-009-0123-z. PubMed DOI
Youl B.D., Turano G., Miller D.H., Towell A.D., MacManus D.G., Moore S.G., Jones S.J., Barrett G., Kendall B.E., Moseley I.F., et al. The pathophysiology of acute optic neuritis. An association of gadolinium leakage with clinical and electrophysiological deficits. Pt 6Brain. 1991;114:2437–2450. doi: 10.1093/brain/114.6.2437. PubMed DOI
Toosy A.T., Mason D.F., Miller D.H. Optic neuritis. Lancet Neurol. 2014;13:83–99. doi: 10.1016/S1474-4422(13)70259-X. PubMed DOI
Steudler J., Ecott T., Ivan D.C., Bouillet E., Walthert S., Berve K., Dick T.P., Engelhardt B., Locatelli G. Autoimmune neuroinflammation triggers mitochondrial oxidation in oligodendrocytes. Glia. 2022;70:2045–2061. doi: 10.1002/glia.24235. PubMed DOI PMC
Qi X., Lewin A.S., Sun L., Hauswirth W.W., Guy J. Suppression of mitochondrial oxidative stress provides long-term neuroprotection in experimental optic neuritis. Investig. Opthalmol. Vis. Sci. 2007;48:681–691. doi: 10.1167/iovs.06-0553. PubMed DOI
Kang E.Y.-C., Liu P.-K., Wen Y.-T., Quinn P.M.J., Levi S.R., Wang N.-K., Tsai R.-K. Role of Oxidative Stress in Ocular Diseases Associated with Retinal Ganglion Cells Degeneration. Antioxidants. 2021;10:1948. doi: 10.3390/antiox10121948. PubMed DOI PMC
Lassmann H., van Horssen J., Mahad D. Progressive multiple sclerosis: Pathology and pathogenesis. Nat. Rev. Neurol. 2012;8:647–656. doi: 10.1038/nrneurol.2012.168. PubMed DOI
van Horssen J., Witte M.E., Schreibelt G., de Vries H.E. Radical changes in multiple sclerosis pathogenesis. Biochim. Biophys. Acta. 2011;1812:141–150. doi: 10.1016/j.bbadis.2010.06.011. PubMed DOI
Haider L. Inflammation, Iron, Energy Failure, and Oxidative Stress in the Pathogenesis of Multiple Sclerosis. Oxid. Med. Cell Longev. 2015;2015:725370. doi: 10.1155/2015/725370. PubMed DOI PMC
Nikić I., Merkler D., Sorbara C., Brinkoetter M., Kreutzfeldt M., Bareyre F.M., Brück W., Bishop D., Misgeld T., Kerschensteiner M. A reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis. Nat. Med. 2011;17:495–499. doi: 10.1038/nm.2324. PubMed DOI
Qi X., Lewin A.S., Sun L., Hauswirth W.W., Guy J. Mitochondrial protein nitration primes neurodegeneration in experimental autoimmune encephalomyelitis. J. Biol. Chem. 2006;281:31950–31962. doi: 10.1074/jbc.M603717200. PubMed DOI
Beltrán B., Quintero M., García-Zaragozá E., O’Connor E., Esplugues J.V., Moncada S. Inhibition of mitochondrial respiration by endogenous nitric oxide: A critical step in Fas signaling. Proc. Natl. Acad. Sci. USA. 2002;99:8892–8897. doi: 10.1073/pnas.092259799. PubMed DOI PMC
Li S., Vana A.C., Ribeiro R., Zhang Y. Distinct role of nitric oxide and peroxynitrite in mediating oligodendrocyte toxicity in culture and in experimental autoimmune encephalomyelitis. Neuroscience. 2011;184:107–119. doi: 10.1016/j.neuroscience.2011.04.007. PubMed DOI
Clementi E., Brown G.C., Feelisch M., Moncada S. Persistent inhibition of cell respiration by nitric oxide: Crucial role ofS-nitrosylation of mitochondrial complex I and protective action of glutathione. Proc. Natl. Acad. Sci. USA. 1998;95:7631–7636. doi: 10.1073/pnas.95.13.7631. PubMed DOI PMC
Lizasoain I., Moro M.A., Knowles R.G., Darley-Usmar V., Moncada S. Nitric oxide and peroxynitrite exert distinct effects on mitochondrial respiration which are differentially blocked by glutathione or glucose. Biochem. J. 1996;314:877–880. doi: 10.1042/bj3140877. PubMed DOI PMC
Cleeter M.W., Cooper J.M., Darley-Usmar V.M., Moncada S., Schapira A.H. Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, by nitric oxide. FEBS Lett. 1994;345:50–54. doi: 10.1016/0014-5793(94)00424-2. PubMed DOI
Moncada S., Bolaños J.P. Nitric oxide, cell bioenergetics and neurodegeneration. J. Neurochem. 2006;97:1676–1689. doi: 10.1111/j.1471-4159.2006.03988.x. PubMed DOI
Mander P., Borutaite V., Moncada S., Brown G.C. Nitric oxide from inflammatory-activated glia synergizes with hypoxia to induce neuronal death. J. Neurosci. Res. 2005;79:208–215. doi: 10.1002/jnr.20285. PubMed DOI
Stewart V.C., Heales S.J. Nitric oxide-induced mitochondrial dysfunction: Implications for neurodegeneration. Free Radic. Biol. Med. 2003;34:287–303. doi: 10.1016/S0891-5849(02)01327-8. PubMed DOI
Heales S.J.R., Barker J.E., Stewart V.C., Brand M.P., Hargreaves I.P., Foppa P., Land J.M., Clark J.B., Bolaνos J.P. Nitric oxide, energy metabolism and neurological disease. Biochem. Soc. Trans. 1997;25:939–943. doi: 10.1042/bst0250939. PubMed DOI
Liñares D., Taconis M., Maña P., Correcha M., Fordham S., Staykova M., Willenborg D.O. Neuronal nitric oxide synthase plays a key role in CNS demyelination. J. Neurosci. 2006;26:12672–12681. doi: 10.1523/JNEUROSCI.0294-06.2006. PubMed DOI PMC
Brown G.C., Neher J.J. Inflammatory neurodegeneration and mechanisms of microglial killing of neurons. Mol. Neurobiol. 2010;41:242–247. doi: 10.1007/s12035-010-8105-9. PubMed DOI
Bolaños J.P., Heales S.J.R., Land J.M., Clark J.B. Effect of peroxynitrite on the mitochondrial respiratory chain: Differential susceptibility of neurones and astrocytes in primary culture. J. Neurochem. 1995;64:1965–1972. doi: 10.1046/j.1471-4159.1995.64051965.x. PubMed DOI
Calcerrada P., Peluffo G., Radi R. Nitric oxide-derived oxidants with a focus on peroxynitrite: Molecular targets, cellular responses and therapeutic implications. Curr. Pharm. Des. 2011;17:3905–3932. doi: 10.2174/138161211798357719. PubMed DOI
Parihar A., Vaccaro P., Ghafourifar P. Nitric oxide irreversibly inhibits cytochrome oxidase at low oxygen concentrations: Evidence for inverse oxygen concentration-dependent peroxynitrite formation. IUBMB Life. 2008;60:64–67. doi: 10.1002/iub.12. PubMed DOI
Li J., Baud O., Vartanian T., Volpe J.J., Rosenberg P.A. Peroxynitrite generated by inducible nitric oxide synthase and NADPH oxidase mediates microglial toxicity to oligodendrocytes. Proc. Natl. Acad. Sci. USA. 2005;102:9936–9941. doi: 10.1073/pnas.0502552102. PubMed DOI PMC
Mosavimehr M., Mesbah-Namin S.A. Mitochondrial Dysfunction in EAE Mice Brains and Impact of HIF1-α Induction to Compensate Energy Loss. Arch. Neurosci. 2020;7:e104209. doi: 10.5812/ans.104209. DOI
Rosenkranz S.C., Shaposhnykov A.A., Trager S., Engler J.B., Witte M.E., Roth V., Vieira V., Paauw N., Bauer S., Schwencke-Westphal C., et al. Enhancing mitochondrial activity in neurons protects against neurodegeneration in a mouse model of multiple sclerosis. eLife. 2021;10:e61798. doi: 10.7554/eLife.61798. PubMed DOI PMC
Mahad D.H., Trapp B.D., Lassmann H. Pathological mechanisms in progressive multiple sclerosis. Lancet Neurol. 2015;14:183–193. doi: 10.1016/S1474-4422(14)70256-X. PubMed DOI
Ng X., Sadeghian M., Heales S., Hargreaves I.P. Assessment of Mitochondrial Dysfunction in Experimental Autoimmune Encephalomyelitis (EAE) Models of Multiple Sclerosis. Int. J. Mol. Sci. 2019;20:4975. doi: 10.3390/ijms20204975. PubMed DOI PMC
Sadeghian M., Mastrolia V., Haddad A.R., Mosley A., Mullali G., Schiza D., Sajic M., Hargreaves I., Heales S., Duchen M.R., et al. Mitochondrial dysfunction is an important cause of neurological deficits in an inflammatory model of multiple sclerosis. Sci. Rep. 2016;6:33249. doi: 10.1038/srep33249. PubMed DOI PMC
Witte M.E., Geurts J.J., de Vries H.E., van der Valk P., van Horssen J. Mitochondrial dysfunction: A potential link between neuroinflammation and neurodegeneration? Mitochondrion. 2010;10:411–418. doi: 10.1016/j.mito.2010.05.014. PubMed DOI
Soane L., Kahraman S., Kristian T., Fiskum G. Mechanisms of impaired mitochondrial energy metabolism in acute and chronic neurodegenerative disorders. J. Neurosci. Res. 2007;85:3407–3415. doi: 10.1002/jnr.21498. PubMed DOI PMC
Lassmann H. Multiple sclerosis: Lessons from molecular neuropathology. Exp. Neurol. 2014;262:2–7. doi: 10.1016/j.expneurol.2013.12.003. PubMed DOI
Desai R.A., Smith K.J. Experimental autoimmune encephalomyelitis from a tissue energy perspective. F1000Research. 2017;6:1973. doi: 10.12688/f1000research.11839.1. PubMed DOI PMC
Rajda C., Pukoli D., Bende Z., Majláth Z., Vécsei L. Excitotoxins, Mitochondrial and Redox Disturbances in Multiple Sclerosis. Int. J. Mol. Sci. 2017;18:353. doi: 10.3390/ijms18020353. PubMed DOI PMC
Lassmann H. Axonal and neuronal pathology in multiple sclerosis: What have we learnt from animal models. Exp. Neurol. 2010;225:2–8. doi: 10.1016/j.expneurol.2009.10.009. PubMed DOI
Smith K.J., Kapoor R., Felts P.A. Demyelination: The role of reactive oxygen and nitrogen species. Brain Pathol. 1999;9:69–92. doi: 10.1111/j.1750-3639.1999.tb00212.x. PubMed DOI PMC
Gonsette R. Neurodegeneration in multiple sclerosis: The role of oxidative stress and excitotoxicity. J. Neurol. Sci. 2008;274:48–53. doi: 10.1016/j.jns.2008.06.029. PubMed DOI
Guy J. Optic nerve degeneration in experimental autoimmune encephalomyelitis. Ophthalmic Res. 2008;40:212–216. doi: 10.1159/000119879. PubMed DOI
Sanz-Morello B., Ahmadi H., Vohra R., Saruhanian S., Freude K.K., Hamann S., Kolko M. Oxidative Stress in Optic Neuropathies. Antioxidants. 2021;10:1538. doi: 10.3390/antiox10101538. PubMed DOI PMC
Tsoi V.L., Hill K.E., Carlson N.G., Warner J.E.A., Rose J.W. Immunohistochemical evidence of inducible nitric oxide synthase and nitrotyrosine in a case of clinically isolated optic neuritis. J. Neuro-Ophthalmol. 2006;26:87–94. doi: 10.1097/01.wno.0000223266.48447.1b. PubMed DOI
Qi X., Sun L., Lewin A.S., Hauswirth W.W., Guy J. Long-term suppression of neurodegeneration in chronic experimental optic neuritis: Antioxidant gene therapy. Investig. Opthalmol. Vis. Sci. 2007;48:5360–5370. doi: 10.1167/iovs.07-0254. PubMed DOI
Guy J., Ellis E.A., Hope G.M., Rao N.A. Antioxidant enzyme suppression of demyelination in experimental optic neuritis. Curr. Eye Res. 1989;8:467–477. doi: 10.3109/02713688909000027. PubMed DOI
Guy J., Ellis E.A., Hope G., Rao N.A. Influence of antioxidant enzymes in reduction of optic disc edema in experimental optic neuritis. J. Free Radic. Biol. Med. 1986;2:349–357. doi: 10.1016/S0748-5514(86)80035-6. PubMed DOI
Hobom M., Storch M.K., Weissert R., Maier K., Radhakrishnan A., Kramer B., Bähr M., Diem R. Mechanisms and time course of neuronal degeneration in experimental autoimmune encephalomyelitis. Brain Pathol. 2004;14:148–157. doi: 10.1111/j.1750-3639.2004.tb00047.x. PubMed DOI PMC
Storch M.K., Stefferl A., Brehm U., Weissert R., Wallström E., Kerschensteiner M., Olsson T., Linington C., Lassmann H. Autoimmunity to myelin oligodendrocyte glycoprotein in rats mimics the spectrum of multiple sclerosis pathology. Brain Pathol. 1998;8:681–694. doi: 10.1111/j.1750-3639.1998.tb00194.x. PubMed DOI PMC
Beck R.W., Cleary P.A., Anderson M.M., Jr., Keltner J.L., Shults W.T., Kaufman D.I., Buckley E.G., Corbett J.J., Kupersmith M.J., Miller N.R., et al. A Randomized, controlled trial of corticosteroids in the treatment of acute optic neuritis. N. Engl. J. Med. 1992;326:581–588. doi: 10.1056/NEJM199202273260901. PubMed DOI
Hickman S.J., Dalton C.M., Miller D.H., Plant G.T. Management of acute optic neuritis. Lancet. 2002;360:1953–1962. doi: 10.1016/S0140-6736(02)11919-2. PubMed DOI
Gal R.L., Vedula S.S., Beck R. Corticosteroids for treating optic neuritis. Cochrane Database Syst. Rev. 2015;8:CD001430. doi: 10.1002/14651858.CD001430.pub4. PubMed DOI PMC
Kapoor R., Miller D.H., Jones S.J., Plant G.T., Brusa A., Gass A., Hawkins C.P., Page R., Wood N.W., Compston D.A.S., et al. Effects of intravenous methylprednisolone on outcome in MRI-based prognostic subgroups in acute optic neuritis. Neurology. 1998;50:230–237. doi: 10.1212/WNL.50.1.230. PubMed DOI
Murphy M.P. How mitochondria produce reactive oxygen species. Biochem. J. 2009;417:1–13. doi: 10.1042/BJ20081386. PubMed DOI PMC
Waypa G.B., Marks J.D., Guzy R.D., Mungai P.T., Schriewer J.M., Dokic D., Ball M.K., Schumacker P.T. Superoxide generated at mitochondrial complex III triggers acute responses to hypoxia in the pulmonary circulation. Am. J. Respir. Crit. Care Med. 2013;187:424–432. doi: 10.1164/rccm.201207-1294OC. PubMed DOI PMC
Hamanaka R.B., Chandel N.S. Mitochondrial reactive oxygen species regulate hypoxic signaling. Curr. Opin. Cell Biol. 2009;21:894–899. doi: 10.1016/j.ceb.2009.08.005. PubMed DOI PMC
Hoek T.L.V., Becker L.B., Shao Z., Li C., Schumacker P.T. Reactive oxygen species released from mitochondria during brief hypoxia induce preconditioning in cardiomyocytes. J. Biol. Chem. 1998;273:18092–18098. doi: 10.1074/jbc.273.29.18092. PubMed DOI
Robinson M.A., Baumgardner J.E., Otto C.M. Oxygen-dependent regulation of nitric oxide production by inducible nitric oxide synthase. Free Radic. Biol. Med. 2011;51:1952–1965. doi: 10.1016/j.freeradbiomed.2011.08.034. PubMed DOI
Jung F., Palmer L.A., Zhou N., Johns R.A. Hypoxic regulation of inducible nitric oxide synthase via hypoxia inducible factor-1 in cardiac myocytes. Circ. Res. 2000;86:319–325. doi: 10.1161/01.RES.86.3.319. PubMed DOI
Eltzschig H.K., Carmeliet P. Hypoxia and inflammation. N. Engl. J. Med. 2011;364:656–665. doi: 10.1056/NEJMra0910283. PubMed DOI PMC
Bartesaghi S., Radi R. Fundamentals on the biochemistry of peroxynitrite and protein tyrosine nitration. Redox Biol. 2017;14:618–625. doi: 10.1016/j.redox.2017.09.009. PubMed DOI PMC
Huie R.E., Padmaja S. The reaction of no with superoxide. Free Radic. Res. Commun. 1993;18:195–199. doi: 10.3109/10715769309145868. PubMed DOI
Beckman J.S., Koppenol W.H. Nitric oxide, superoxide, and peroxynitrite: The good, the bad, and the ugly. Pt 1Am. J. Physiol. 1996;271:C1424–C1437. doi: 10.1152/ajpcell.1996.271.5.C1424. PubMed DOI
Mohammadi S., Gouravani M., Salehi M.A., Arevalo J.F., Galetta S.L., Harandi H., Frohman E.M., Frohman T.C., Saidha S., Sattarnezhad N., et al. Optical coherence tomography angiography measurements in multiple sclerosis: A systematic review and meta-analysis. J. Neuroinflam. 2023;20:85. doi: 10.1186/s12974-023-02763-4. PubMed DOI PMC
Collignon-Robe N.J., Feke G.T., Rizzo J.F., 3rd Optic nerve head circulation in nonarteritic anterior ischemic optic neuropathy and optic neuritis. Ophthalmology. 2004;111:1663–1672. doi: 10.1016/j.ophtha.2004.05.020. PubMed DOI
Chen T.-C., Yeh C.-Y., Lin C.-W., Yang C.-M., Yang C.-H., Lin I.-H., Chen P.-Y., Cheng J.-Y., Hu F.-R. Vascular hypoperfusion in acute optic neuritis is a potentially new neurovascular model for demyelinating diseases. PLoS ONE. 2017;12:e0184927. doi: 10.1371/journal.pone.0184927. PubMed DOI PMC
Akarsu C., Tan F.U., Kendi T. Color Doppler imaging in optic neuritis with multiple sclerosis. Graefe’s Arch. Clin. Exp. Ophthalmol. 2004;242:990–994. doi: 10.1007/s00417-004-0948-1. PubMed DOI
Buscho S.E., Xia F., Shi S., Lin J.L., Szczesny B., Zhang W., Motamedi M., Liu H. Non-Invasive Evaluation of Retinal Vascular Alterations in a Mouse Model of Optic Neuritis Using Laser Speckle Flowgraphy and Optical Coherence Tomography Angiography. Cells. 2023;12:2685. doi: 10.3390/cells12232685. PubMed DOI PMC
Rocha N.P., Colpo G.D., Bravo-Alegria J., Lincoln J.A., Wolinsky J.S., Lindsey J.W., Teixeira A.L., Freeman L. Exploring the relationship between Endothelin-1 and peripheral inflammation in multiple sclerosis. J. Neuroimmunol. 2019;326:45–48. doi: 10.1016/j.jneuroim.2018.11.007. PubMed DOI
Monti L., Morbidelli L., Bazzani L., Rossi A. Influence of Circulating Endothelin-1 and Asymmetric Dimethylarginine on Whole Brain Circulation Time in Multiple Sclerosis. Biomark. Insights. 2017;12:1177271917712514. doi: 10.1177/1177271917712514. PubMed DOI PMC
Pache M., Kaiser H.J., Akhalbedashvili N., Lienert C., Dubler B., Kappos L., Flammer J. Extraocular blood flow and endothelin-1 plasma levels in patients with multiple sclerosis. Eur. Neurol. 2003;49:164–168. doi: 10.1159/000069085. PubMed DOI
Haufschild T., Shaw S.G., Kaiser H.J., Flammer J. Transient raise of endothelin-1 plasma level and reduction of ocular blood flow in a patient with optic neuritis. Ophthalmologica. 2003;217:451–453. doi: 10.1159/000073079. PubMed DOI
Castellazzi M., Lamberti G., Resi M.V., Baldi E., Caniatti L.M., Galante G., Perri P., Pugliatti M. Increased Levels of Endothelin-1 in Cerebrospinal Fluid Are a Marker of Poor Visual Recovery after Optic Neuritis in Multiple Sclerosis Patients. Dis. Markers. 2019;2019:9320791. doi: 10.1155/2019/9320791. PubMed DOI PMC
Brunori M., Forte E., Arese M., Mastronicola D., Giuffrè A., Sarti P. Nitric oxide and the respiratory enzyme. Biochim. Biophys. Acta (BBA)-Bioenerg. 2006;1757:1144–1154. doi: 10.1016/j.bbabio.2006.05.011. PubMed DOI
Sarti P., Arese M., Bacchi A., Barone M.C., Forte E., Mastronicola D., Brunori M., Giuffrè A. Nitric oxide and mitochondrial complex IV. IUBMB Life. 2003;55:605–611. doi: 10.1080/15216540310001628726. PubMed DOI
Amatruda M., Harris K., Matis A., Davies A.L., McElroy D., Clark M., Linington C., Desai R., Smith K.J. Oxygen treatment reduces neurological deficits and demyelination in two animal models of multiple sclerosis. Neuropathol. Appl. Neurobiol. 2023;49:e12868. doi: 10.1111/nan.12868. PubMed DOI PMC
Desai R.A., Davies A.L., Del Rossi N., Tachrount M., Dyson A., Gustavson B., Kaynezhad P., Mackenzie L., van der Putten M.A., McElroy D., et al. Nimodipine Reduces Dysfunction and Demyelination in Models of Multiple Sclerosis. Ann. Neurol. 2020;88:123–136. doi: 10.1002/ana.25749. PubMed DOI PMC
Davies A.L., Desai R.A., Bloomfield P.S., McIntosh P.R., Chapple K.J., Linington C., Fairless R., Diem R., Kasti M., Murphy M.P., et al. Neurological deficits caused by tissue hypoxia in neuroinflammatory disease. Ann. Neurol. 2013;74:815–825. doi: 10.1002/ana.24006. PubMed DOI
Desai R.A., Davies A.L., Tachrount M., Kasti M., Laulund F., Golay X., Smith K.J. Cause and prevention of demyelination in a model multiple sclerosis lesion. Ann. Neurol. 2016;79:591–604. doi: 10.1002/ana.24607. PubMed DOI PMC
Fern R., Harrison P.J. The effects of compression upon conduction in myelinated axons of the isolated frog sciatic nerve. J. Physiol. 1991;432:111–122. doi: 10.1113/jphysiol.1991.sp018379. PubMed DOI PMC
Singer M., Young P.J., Laffey J.G., Asfar P., Taccone F.S., Skrifvars M.B., Meyhoff C.S., Radermacher P. Dangers of hyperoxia. Crit. Care. 2021;25:440. doi: 10.1186/s13054-021-03815-y. PubMed DOI PMC
Bechtold D.A., Smith K.J. Sodium-mediated axonal degeneration in inflammatory demyelinating disease. J. Neurol. Sci. 2005;233:27–35. doi: 10.1016/j.jns.2005.03.003. PubMed DOI
Bechtold D.A., Miller S.J., Dawson A.C., Sun Y., Kapoor R., Berry D., Smith K.J. Axonal protection achieved in a model of multiple sclerosis using lamotrigine. J. Neurol. 2006;253:1542–1551. doi: 10.1007/s00415-006-0204-1. PubMed DOI
Bechtold D.A., Kapoor R., Smith K.J. Axonal protection using flecainide in experimental autoimmune encephalomyelitis. Ann. Neurol. 2004;55:607–616. doi: 10.1002/ana.20045. PubMed DOI
Lo A.C., Saab C.Y., Black J.A., Waxman S.G. Phenytoin protects spinal cord axons and preserves axonal conduction and neurological function in a model of neuroinflammation in vivo. J. Neurophysiol. 2003;90:3566–3571. doi: 10.1152/jn.00434.2003. PubMed DOI
Black J.A., Liu S., Hains B.C., Saab C.Y., Waxman S.G. Long-term protection of central axons with phenytoin in monophasic and chronic-relapsing EAE. Brain. 2006;129:3196–3208. doi: 10.1093/brain/awl216. PubMed DOI
Bechtold D.A., Yue X., Evans R.M., Davies M., Gregson N.A., Smith K.J. Axonal protection in experimental autoimmune neuritis by the sodium channel blocking agent flecainide. Brain. 2004;128:18–28. doi: 10.1093/brain/awh328. PubMed DOI
Raftopoulos R., Hickman S.J., Toosy A., Sharrack B., Mallik S., Paling D., Altmann D.R., Yiannakas M.C., Malladi P., Sheridan R., et al. Phenytoin for neuroprotection in patients with acute optic neuritis: A randomised, placebo-controlled, phase 2 trial. Lancet Neurol. 2016;15:259–269. doi: 10.1016/S1474-4422(16)00004-1. PubMed DOI
Morsali D., Bechtold D., Lee W., Chauhdry S., Palchaudhuri U., Hassoon P., Snell D.M., Malpass K., Piers T., Pocock J., et al. Safinamide and flecainide protect axons and reduce microglial activation in models of multiple sclerosis. Pt 4Brain. 2013;136:1067–1082. doi: 10.1093/brain/awt041. PubMed DOI
Craner M.J., Damarjian T.G., Liu S., Hains B.C., Lo A.C., Black J.A., Newcombe J., Cuzner M.L., Waxman S.G. Sodium channels contribute to microglia/macrophage activation and function in EAE and MS. Glia. 2005;49:220–229. doi: 10.1002/glia.20112. PubMed DOI
Black J.A., Liu S., Waxman S.G. Sodium channel activity modulates multiple functions in microglia. Glia. 2009;57:1072–1081. doi: 10.1002/glia.20830. PubMed DOI
Sadeghian M., Mullali G., Pocock J.M., Piers T., Roach A., Smith K.J. Neuroprotection by safinamide in the 6-hydroxydopamine model of Parkinson’s disease. Neuropathol. Appl. Neurobiol. 2015;42:423–435. doi: 10.1111/nan.12263. PubMed DOI
Arteel G.E., Thurman R.G., Raleigh J.A. Reductive metabolism of the hypoxia marker pimonidazole is regulated by oxygen tension independent of the pyridine nucleotide redox state. JBIC J. Biol. Inorg. Chem. 1998;253:743–750. doi: 10.1046/j.1432-1327.1998.2530743.x. PubMed DOI
Zanetti M., d’Uscio L.V., Peterson T.E., Katusic Z.S., O’Brien T. Analysis of superoxide anion production in tissue. Methods Mol. Med. 2005;108:65–72. PubMed
Peshavariya H.M., Dusting G.J., Selemidis S. Analysis of dihydroethidium fluorescence for the detection of intracellular and extracellular superoxide produced by NADPH oxidase. Free Radic. Res. 2007;41:699–712. doi: 10.1080/10715760701297354. PubMed DOI