The Genotoxicity of Organic Extracts from Particulate Emissions Produced by Neat Gasoline (E0) and a Gasoline-Ethanol Blend (E15) in BEAS-2B Cells

. 2023 Dec 21 ; 14 (1) : 1-14. [epub] 20231221

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38535490

Grantová podpora
18-06548Y Czech Science Foundation
LM2018124 Ministry of Education Youth and Sports
LM2023053 Ministry of Education Youth and Sports
CZ.02.1.01/0.0/0.0/16_013/0001821 Ministry of Education Youth and Sports

Emissions from modern gasoline engines represent an environmental and health risk. In this study, we aimed to compare the toxicity of organic compound mixtures extracted from particulate matter (PM extracts) produced by neat gasoline (E0) and a blend containing 15% ethanol (E15), which is offered as an alternative to non-renewable fossil fuels. Human lung BEAS-2B cells were exposed to PM extracts, and biomarkers of genotoxicity, such as DNA damage evaluated by comet assay, micronuclei formation, levels of phosphorylated histone H2AX, the expression of genes relevant to the DNA damage response, and exposure to polycyclic aromatic hydrocarbons (PAHs), were determined. Results showed that both PM extracts significantly increased the level of oxidized DNA lesions. The E0 extract exhibited a more pronounced effect, possibly due to the higher content of nitrated PAHs. Other endpoints were not substantially affected by any of the PM extracts. Gene expression analysis revealed mild but coordinated induction of genes related to DNA damage response, and a strong induction of PAH-inducible genes, indicating activation of the aryl hydrocarbon receptor (AhR). Our data suggest that the addition of ethanol into the gasoline diminished the oxidative DNA damage, but no effect on other genotoxicity biomarkers was observed. Activated AhR may play an important role in the toxicity of gasoline PM emissions.

Zobrazit více v PubMed

Englert N. Fine Particles and Human Health—A Review of Epidemiological Studies. Toxicol. Lett. 2004;149:235–242. doi: 10.1016/j.toxlet.2003.12.035. PubMed DOI

Xia T., Zhu Y., Mu L., Zhang Z.-F., Liu S. Pulmonary Diseases Induced by Ambient Ultrafine and Engineered Nanoparticles in Twenty-First Century. Natl. Sci. Rev. 2016;3:416–429. doi: 10.1093/nsr/nww064. PubMed DOI PMC

IARC Working Group on the Evaluation of Carcinogenic Risks to Humans . IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Volume 92. International Agency for Research on Cancer; Lyon, France: 2010. Some Non-Heterocyclic Polycyclic Aromatic Hydrocarbons and Some Related Exposures; pp. 1–853. PubMed PMC

Xue W., Warshawsky D. Metabolic Activation of Polycyclic and Heterocyclic Aromatic Hydrocarbons and DNA Damage: A Review. Toxicol. Appl. Pharmacol. 2005;206:73–93. doi: 10.1016/j.taap.2004.11.006. PubMed DOI

Vione D., Barra S., De Gennaro G., De Rienzo M., Gilardoni S., Perrone M.G., Pozzoli L. Polycyclic Aromatic Hydrocarbons in the Atmosphere: Monitoring, Sources, Sinks and Fate. II: Sinks and Fate. Ann. Chim. 2004;94:257–268. doi: 10.1002/adic.200490031. PubMed DOI

Park M., Joo H.S., Lee K., Jang M., Kim S.D., Kim I., Borlaza L.J.S., Lim H., Shin H., Chung K.H., et al. Differential Toxicities of Fine Particulate Matters from Various Sources. Sci. Rep. 2018;8:17007. doi: 10.1038/s41598-018-35398-0. PubMed DOI PMC

Platt S.M., El Haddad I., Pieber S.M., Zardini A.A., Suarez-Bertoa R., Clairotte M., Daellenbach K.R., Huang R.-J., Slowik J.G., Hellebust S., et al. Gasoline Cars Produce More Carbonaceous Particulate Matter than Modern Filter-Equipped Diesel Cars. Sci. Rep. 2017;7:4926. doi: 10.1038/s41598-017-03714-9. PubMed DOI PMC

International Agency for Research on Cancer . Diesel and Gasoline Engine Exhaust and Some Nitroarenes. International Agency for Research on Cancer; Lyon, France: 2012.

Muñoz M., Heeb N.V., Haag R., Honegger P., Zeyer K., Mohn J., Comte P., Czerwinski J. Bioethanol Blending Reduces Nanoparticle, PAH, and Alkyl- and Nitro-PAH Emissions and the Genotoxic Potential of Exhaust from a Gasoline Direct Injection Flex-Fuel Vehicle. Environ. Sci. Technol. 2016;50:11853–11861. doi: 10.1021/acs.est.6b02606. PubMed DOI

Karavalakis G., Durbin T.D., Shrivastava M., Zheng Z., Villela M., Jung H. Impacts of Ethanol Fuel Level on Emissions of Regulated and Unregulated Pollutants from a Fleet of Gasoline Light-Duty Vehicles. Fuel. 2012;93:549–558. doi: 10.1016/j.fuel.2011.09.021. DOI

Libalova H., Rossner P., Vrbova K., Brzicova T., Sikorova J., Vojtisek-Lom M., Beranek V., Klema J., Ciganek M., Neca J., et al. Transcriptional Response to Organic Compounds from Diverse Gasoline and Biogasoline Fuel Emissions in Human Lung Cells. Toxicol. Vitr. 2018;48:329–341. doi: 10.1016/j.tiv.2018.02.002. PubMed DOI

Novotná B., Sikorová J., Milcová A., Pechout M., Dittrich L., Vojtíšek-Lom M., Rossner P.J., Brzicová T., Topinka J. The Genotoxicity of Organic Extracts from Particulate Truck Emissions Produced at Various Engine Operating Modes Using Diesel or Biodiesel (B100) Fuel: A Pilot Study. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2019;845:403034. doi: 10.1016/j.mrgentox.2019.03.007. PubMed DOI

Livak K.J., Schmittgen T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-ΔΔCT Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI

Krzyszczak A., Czech B. Occurrence and Toxicity of Polycyclic Aromatic Hydrocarbons Derivatives in Environmental Matrices. Sci. Total Environ. 2021;788:147738. doi: 10.1016/j.scitotenv.2021.147738. PubMed DOI

Keyte I.J., Albinet A., Harrison R.M. On-Road Traffic Emissions of Polycyclic Aromatic Hydrocarbons and Their Oxy- and Nitro- Derivative Compounds Measured in Road Tunnel Environments. Sci. Total Environ. 2016;566–567:1131–1142. doi: 10.1016/j.scitotenv.2016.05.152. PubMed DOI

Yang J., Roth P., Durbin T.D., Shafer M.M., Hemming J., Antkiewicz D.S., Asa-Awuku A., Karavalakis G. Emissions from a Flex Fuel GDI Vehicle Operating on Ethanol Fuels Show Marked Contrasts in Chemical, Physical and Toxicological Characteristics as a Function of Ethanol Content. Sci. Total Environ. 2019;683:749–761. doi: 10.1016/j.scitotenv.2019.05.279. PubMed DOI

Kostenidou E., Martinez-Valiente A., R’Mili B., Marques B., Temime-Roussel B., Durand A., André M., Liu Y., Louis C., Vansevenant B., et al. Technical Note: Emission Factors, Chemical Composition, and Morphology of Particles Emitted from Euro 5 Diesel and Gasoline Light-Duty Vehicles during Transient Cycles. Atmos. Chem. Phys. 2021;21:4779–4796. doi: 10.5194/acp-21-4779-2021. DOI

Pu X., Wang Z., Klaunig J.E. Alkaline Comet Assay for Assessing DNA Damage in Individual Cells. Curr. Protoc. Toxicol. 2015;65:3.12.1–3.12.11. doi: 10.1002/0471140856.tx0312s65. PubMed DOI

Shang Y., Zhou Q., Wang T., Jiang Y., Zhong Y., Qian G., Zhu T., Qiu X., An J. Airborne Nitro-PAHs Induce Nrf2/ARE Defense System against Oxidative Stress and Promote Inflammatory Process by Activating PI3K/Akt Pathway in A549 Cells. Toxicol. Vitr. 2017;44:66–73. doi: 10.1016/j.tiv.2017.06.017. PubMed DOI

Agarwal A.K., Singh A.P., Gupta T., Agarwal R.A., Sharma N., Pandey S.K., Ateeq B. Toxicity of Exhaust Particulates and Gaseous Emissions from Gasohol (Ethanol Blended Gasoline)-Fuelled Spark Ignition Engines. Environ. Sci. Process. Impacts. 2020;22:1540–1553. doi: 10.1039/D0EM00082E. PubMed DOI

Andrysík Z., Vondráček J., Marvanová S., Ciganek M., Neča J., Pěnčíková K., Mahadevan B., Topinka J., Baird W.M., Kozubík A., et al. Activation of the Aryl Hydrocarbon Receptor Is the Major Toxic Mode of Action of an Organic Extract of a Reference Urban Dust Particulate Matter Mixture: The Role of Polycyclic Aromatic Hydrocarbons. Mutat. Res.—Fundam. Mol. Mech. Mutagen. 2011;714:53–62. doi: 10.1016/j.mrfmmm.2011.06.011. PubMed DOI

Puga A., Ma C., Marlowe J.L. The Aryl Hydrocarbon Receptor Cross-Talks with Multiple Signal Transduction Pathways. Biochem. Pharmacol. 2009;77:713–722. doi: 10.1016/j.bcp.2008.08.031. PubMed DOI PMC

Líbalová H., Krčková S., Uhlířová K., Kléma J., Ciganek M., Rössner P., Šrám R.J., Vondráček J., Machala M., Topinka J. Analysis of Gene Expression Changes in A549 Cells Induced by Organic Compounds from Respirable Air Particles. Mutat. Res.—Fundam. Mol. Mech. Mutagen. 2014;770:94–105. doi: 10.1016/j.mrfmmm.2014.10.002. PubMed DOI

Vondráček J., Pěnčíková K., Ciganek M., Pivnička J., Karasová M., Hýžďalová M., Strapáčová S., Pálková L., Neča J., Matthews J., et al. Environmental Six-Ring Polycyclic Aromatic Hydrocarbons Are Potent Inducers of the AhR-Dependent Signaling in Human Cells. Environ. Pollut. 2020;266:115125. doi: 10.1016/j.envpol.2020.115125. PubMed DOI

Tauffenberger A., Magistretti P.J. Reactive Oxygen Species: Beyond Their Reactive Behavior. Neurochem. Res. 2021;46:77–87. doi: 10.1007/s11064-020-03208-7. PubMed DOI PMC

Black W., Chen Y., Matsumoto A., Thompson D.C., Lassen N., Pappa A., Vasiliou V. Molecular Mechanisms of ALDH3A1-Mediated Cellular Protection against 4-Hydroxy-2-Nonenal. Free Radic. Biol. Med. 2012;52:1937–1944. doi: 10.1016/j.freeradbiomed.2012.02.050. PubMed DOI PMC

Jang J.-H., Bruse S., Liu Y., Duffy V., Zhang C., Oyamada N., Randell S., Matsumoto A., Thompson D.C., Lin Y., et al. Aldehyde Dehydrogenase 3A1 Protects Airway Epithelial Cells from Cigarette Smoke-Induced DNA Damage and Cytotoxicity. Free Radic. Biol. Med. 2014;68:80–86. doi: 10.1016/j.freeradbiomed.2013.11.028. PubMed DOI PMC

Abbas I., Badran G., Verdin A., Ledoux F., Roumie M., Lo Guidice J.-M., Courcot D., Garçon G. In Vitro Evaluation of Organic Extractable Matter from Ambient PM(2.5) Using Human Bronchial Epithelial BEAS-2B Cells: Cytotoxicity, Oxidative Stress, pro-Inflammatory Response, Genotoxicity, and Cell Cycle Deregulation. Environ. Res. 2019;171:510–522. doi: 10.1016/j.envres.2019.01.052. PubMed DOI

Majoros H., Ujfaludi Z., Borsos B.N., Hudacsek V.V., Nagy Z., Coin F., Buzas K., Kovács I., Bíró T., Boros I.M., et al. SerpinB2 Is Involved in Cellular Response upon UV Irradiation. Sci. Rep. 2019;9:2753. doi: 10.1038/s41598-019-39073-w. PubMed DOI PMC

Hsieh H.-H., Chen Y.-C., Jhan J.-R., Lin J.-J. The Serine Protease Inhibitor SerpinB2 Binds and Stabilizes P21 in Senescent Cells. J. Cell Sci. 2017;130:3272–3281. doi: 10.1242/jcs.204974. PubMed DOI

Brauze D., Kiwerska K., Bednarek K., Grenman R., Janiszewska J., Giefing M., Jarmuz-Szymczak M. Expression of Serpin Peptidase Inhibitor B2 (SERPINB2) Is Regulated by Aryl Hydrocarbon Receptor (AhR) Chem. Biol. Interact. 2019;309:108700. doi: 10.1016/j.cbi.2019.06.013. PubMed DOI

Harris S.L., Levine A.J. The P53 Pathway: Positive and Negative Feedback Loops. Oncogene. 2005;24:2899–2908. doi: 10.1038/sj.onc.1208615. PubMed DOI

Vousden K.H., Lane D.P. P53 in Health and Disease. Nat. Rev. Mol. Cell Biol. 2007;8:275–283. doi: 10.1038/nrm2147. PubMed DOI

Skosareva L.V., Lebedeva N.A., Lavrik O.I., Rechkunova N.I. Repair of Bulky DNA Lesions Deriving from Polycyclic Aromatic Hydrocarbons. Mol. Biol. 2013;47:634–644. doi: 10.1134/S002689331305018X. PubMed DOI

Prado F. Homologous Recombination Maintenance of Genome Integrity during DNA Damage Tolerance. Mol. Cell. Oncol. 2014;1:e957039. doi: 10.4161/23723548.2014.957039. PubMed DOI PMC

Liu D., Xu Y. P53, Oxidative Stress, and Aging. Antioxid. Redox Signal. 2011;15:1669–1678. doi: 10.1089/ars.2010.3644. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...